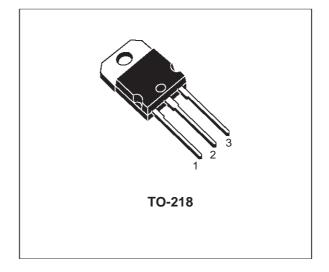
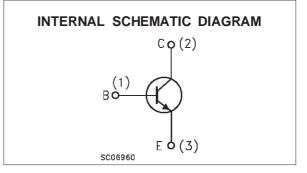


BUL810

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- SGS-THOMSON PREFERRED SALESTYPE
- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- LOW BASE-DRIVE REQUIREMENTS
- VERY HIGH SWITCHING SPEED
- FULLY CHARACTERIZED AT 125°C


APPLICATIONS


- ELECTRONIC TRANSFORMER FOR HALOGEN LAMPS
- ELECTRONIC BALLASTS FOR
 FLUORESCENT LIGHTING
- SWITCH MODE POWER SUPPLIES

DESCRIPTION

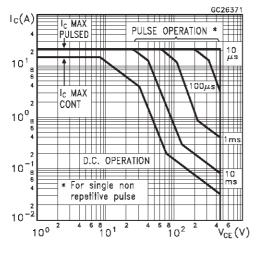
The BUL810 is manufactured using high voltage Multiepitaxial Mesa technology for cost-effective high performance. It uses a Hollow Emitter structure to enhance switching speeds.

The BUL series is designed for use in lighting applications and low cost switch-mode power supplies.

Symbol	Parameter	Value	Unit
VCES	Collector-Emitter Voltage (V _{BE} = 0)	1000	V
VCEO	Collector-Emitter Voltage (I _B = 0)	450	V
V _{EBO}	Emitter-Base Voltage $(I_C = 0)$	9	V
Ic	Collector Current	15	A
Ісм	Collector Peak Current (t _p < 5 ms)	22	A
Ι _Β	Base Current	5	A
I _{BM}	Base Peak Current (t _p < 5 ms)	10	A
P _{tot}	Total Dissipation at T _c = 25 °C	125	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

ABSOLUTE MAXIMUM RATINGS

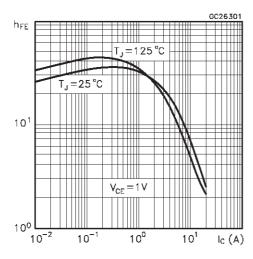
THERMAL DATA


R _{thj-case}	Thermal Resistance Junction-Case	Max	1	°C/W
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	30	°C/W

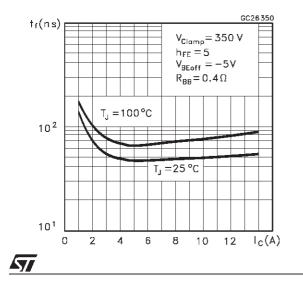
ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

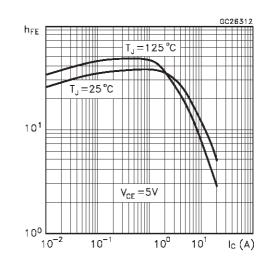

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current ($V_{BE} = 0$)	$V_{CE} = 1000 V$ $V_{CE} = 1000 V$ $T_j = 125 \ ^{\circ}C$			100 500	μΑ μΑ
I _{CEO}	Collector Cut-off Current ($I_B = 0$)	V _{CE} = 450 V			250	μA
$V_{CEO(sus)}$	Collector-Emitter Sustaining Voltage	$I_{C} = 100 \text{ mA}$ L = 25 mH	450			V
V_{EBO}	Emitter-Base Voltage (I _C = 0)	I _E = 10 mA	9			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage				1 1.5 5	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage				1.3 1.6	V V
h _{FE} *	DC Current Gain		10 10		40	
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$ I_C = 8 \ A I_{B1} = 1.6 \ A \\ V_{BE(off)} = -5 \ V R_{BB} = 0.4 \ \Omega \\ V_{CL} = 350 \ V L = 200 \ \mu H $		1.5 55	2.3 110	μs ns
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$ \begin{array}{l} I_{C} = 8 \ A I_{B1} = 1.6 \ A \\ V_{BE(off)} = -5 \ V R_{BB} = 0.4 \ \Omega \\ V_{CL} = 350 \ V L = 200 \ \mu H \\ T_{j} = 100 \ ^{\circ}C \end{array} $		1.9 80		μs ns

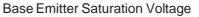
* Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

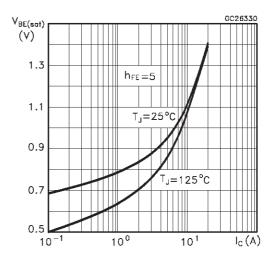

Safe Operating Areas

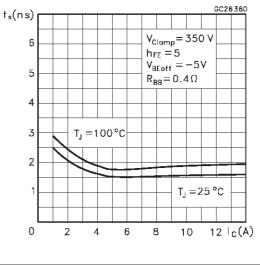

Derating Curve

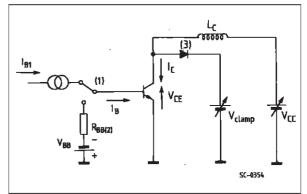

DC Current Gain


Collector Emitter Saturation Voltage



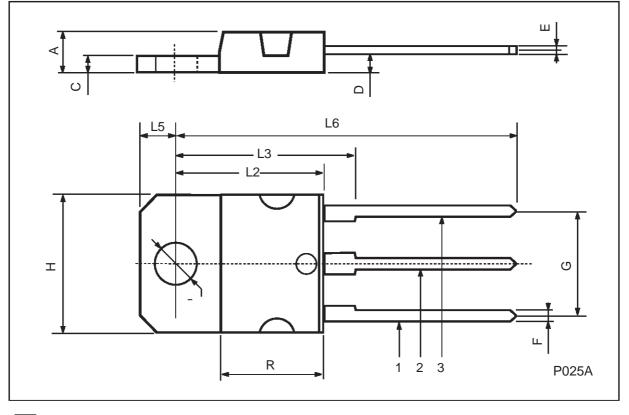

Inductive Fall Time


DC Current Gain



Reverse Biased SOA

RBSOA and Inductive Load Switching Test Circuits



57

(1) Fast electronic switch
 (2) Non-inductive Resistor
 (3) Fast recovery rectifier

DIM.	mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.7		4.9	0.185		0.193
С	1.17		1.37	0.046		0.054
D		2.5			0.098	
E	0.5		0.78	0.019		0.030
F	1.1		1.3	0.043		0.051
G	10.8		11.1	0.425		0.437
Н	14.7		15.2	0.578		0.598
L2	-		16.2	-		0.637
L3		18			0.708	
L5	3.95		4.15	0.155		0.163
L6		31			1.220	
R	-		12.2	-		0.480
Ø	4		4.1	0.157		0.161

TO-218 (SOT-93) MECHANICAL DATA

57

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1998 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.