

Precautions and Guidelines for Aluminum Electrolytic Capacitors

1. Guidelines for Circuit Design

Selecting the capacitors to suit installation and operating conditions, and using the capacitors to meet the performance limits prescribed in this cataloge or the product specifications (1) Polarity

Aluminum electrolytic capacitors are polarized. Make sure of the polarity, if used in reverse polarity, the circuit life may be shortened or the capacitor may be damaged. When the polarity in a circuit sometimes can be reversed or unknown, a bi-polar capacitor shall be used. Also, note that DC capacitors cannot be used for AC application. Reverse voltage 1 voltage acceptable within specified temperature and working voltage.

(2) Operating Voltage

Do not apply DC voltage, which exceeds the rated voltage of the capacitor and not be reverse voltage. If a voltage exceeding the capacitor's voltage rating is applied, the capacitor may be damaged as leakage current increase. Using capacitors at recommended working voltage prolongs capacitor life. The surge voltage rating is the maximum DC over-voltage to which the capacitors may be subjected of short periods.

(3) Ripple Current

- (a) The combined value of DC voltage and the peak AC voltage shall not exceed the rated voltage. When an excessive ripple current passes, the capacitor may be damaged with the vent operating, etc. Use the electrolytic capacitor within the permissible ripple range current at specified frequency and temperature.
- (b) The temperature coefficient shows the limit of ripple current exceeding the rated ripple current that can be applied to the capacitor at the temperature. The expected life of a capacitor is nearly equal to the lifetime at the upper category temperature.

(4) Operating Temperature

Use the capacitors according to the specified operating temperature range. If used the capacitor outside the maximum rated temperature will considerably shorten the life or cause the capacitor to vent. Usage at room ambient will ensure longer life.

(5) Leakage Current

The leakage current shall be within specified levels. When capacitors are applied at a lower voltage, the actual leakage current will be reduced proportionately.

(6) Charge and Discharge

The capacitor is not suitable for a circuit in which charge and discharge are frequently repeated. The capacitance value may drop by forming oxide layer on the cathode foil, or the capacitor may be damaged by generating heat due to continuous rapid charge and discharge.

(7) Condition of Use

- (a) The capacitors shall not be exposed to water, saltwater spray, oil or fumes, high humidity or humidity condensation and direct sunlight.
- (b) Ambient conditions that include hazardous gases/fumes such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine or bromine gas, ammonia, etc.
- (c) Exposed to ozone, ultraviolet rays and radiation.
- (d) Severe vibration or physical shock that exceeds the condition in specification sheets.

(8) Consideration to Circuit Design

- (a) Please make sure the application and mounting conditions that the capacitor will be used are within the conditions specified in the catalog. If the conditions are beyond the conditions specified in the catalog, please contact Lelon.
- (b) Do not design a circuit board so that heat-generating components are places near an aluminum electrolytic capacitor or reverse side of PCB. A cooling system is recommended.
- (c) Operating temperature, applied voltage and ripple current shall be within specification. The ambient temperature shall not exceed the operating temperature and applied ripple current shall not exceed the allowable ripple current specified in the specification.
- (d) Performances of electrical characteristics of aluminum electrolytic capacitors are affected by variation of operating temperature and frequency. Consider this variation

designing the circuit.

- (e) When two or more aluminum capacitors are connected in parallel, consider the current balance that flow through the capacitors.
- (f) If more than two capacitors are connected in series, make sure the applied voltage will be lower than the rated voltage and that voltage will be applied to each equally using a balancing resistor in parallel with each capacitor.
- (g) For appropriate choice of capacitors for circuit that repeat rapid charge and discharge, please consult Lelon.
- (h) Outer sleeve of the capacitor is not guaranteed as an electrical insulator. Do not use a standard sleeve on a capacitor that requires the electrical insulation. When the application requires special electrical insulation, please contact Lelon.
- Do not tilt lay down or twist the capacitor's body after the capacitor is soldered to the PCB.

2. Caution for Assembling Capacitors

(1) Mounting

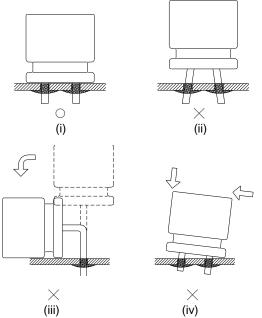
- (a) Aluminum electrolytic capacitors cannot be re-used once the capacitor has assembled in the set and power applied.
- (b) Aluminum electrolytic capacitors may have electrical potential between positive and negative terminal, please discharge through a $1k\Omega$ resistor before use.
- (c) Leakage current of Aluminum electrolytic capacitors may be increased after storage a long period of time. When leakage current has increased, please perform a voltage treatment before use.

Voltage treatment:

The capacitors shall be applied with DC rated voltage through a resistor of $1k\Omega$ in series for one hour, and then discharge through a resistor of $1k\Omega$. When the capacitors have been assembled in the board, use a volt regulator to input voltage gradually to the rated voltage of the board.

- (d) Please confirm the rated voltage before mounting.
- (e) Please confirm the polarity before mounting.
- (f) Do not use the capacitor that once dropped on the hard floor.
- (g) Do not damage the capacitor while mounting.
- (h) Capacitors shall be mounted that hold spacing on PCB matches the lead pitch of the capacitors.
- During the auto-insertion process and parts inspection, capacitors shall avoid the excessive force and shock.
- (j) Do not design to locate any wiring or circuit around the capacitor's pressure relief vent. The following clearance should be made above the pressure relief vent. The pressure relief vent will not open without the appropriate free space.

Case Diameter	ϕ 6.3 ~ ϕ 16	φ18~ φ35	ϕ 40 or more
Clearance (min)	2 mm	3 mm	5 mm


(2) Soldering

- (a) Be careful of temperature and time when soldering. Dip of flow soldering of the capacitors should be limited at less than 260±5℃ for 10±1 seconds or soldering iron with 350±10℃ for 3+1/-0 seconds. Do not dip capacitor's body into melted solder.
- (b) High humidity will affect the solder ability of lead wire and terminals. High temperature will reduce long-term operating life.
- (c) Except SMD type, reflow soldering can not be used for any types of aluminum electrolytic capacitors. When using SMD type capacitor, please check the reflow profile. The temperature and duration shall not exceed the specified temperature and duration in the specification. If the temperature or duration is higher than the value specified, please consult Lelon before usage.
- (d) Standard aluminum electrolytic capacitors cannot withstand more than one reflow process. Please consult our engineering department when needed.

(Continued on next page)

Product Guide

- (e) Defective mounting on PCB and improper external strength applied on the lead wires or case body after soldering (see below drawings) may damage insdie structure of the capacitor and may cause short circuit, high leakage current or leakage problems.
 - (i) Good soldering
 - (ii) Hole-to-hole space on board differs from the lead space of lead wires.
 - (iii) Lead wires are bent after soldering.
 - (iv) Case body doesn't stand vertical on board after soldering. Do not bend or twist the capacitor's body after soldering.

(3) Cleaning Circuit Boards after Soldering

Halogenated solvent cleaning is not available for aluminum electrolytic capacitors. IPA (Isopropyl Alcohol) is one of the

For further details, please refer to IEC 60384-4 - Fixed capacitors for use in electronic equipment – Part 4: Sectional specification – Aluminium electrolytic capacitors with solid (MnO2) and non-solid electrolyte (Established in January 1995, Revised in March 2007), and

EIAJ RCR-2367B - Guideline of notabilia for fixed aluminium electrolytic capacitors for use in electronic equipment [(Technical Standardization Committee on Passive Components (Established in March 1995, Revised in March 2002)]

most acceptable cleaning agents; it is necessary to maintain a flux content in the cleaning liquid at a maximum limit of 2 Wt. %. If you use other cleaning agents, please consult Lelon.

3. Maintenance Inspection

Periodical inspection is necessary for using the aluminum capacitors with industrial equipment. The following items should be checked:

- (1) Appearance: Vent operation, leaking electrolyte, etc.
- (2) Electrical characteristic: Capacitance, dissipation factor, leakage current, and other specified items listed in specification. Lelon recommend replacing the capacitors if the parts are out of specifications.

4. Storage

- (1) Aluminum electrolytic capacitor should not be stored in high temperature or high humidity condition. The suitable condition is 5° C ~ 35° C and less than 75% in relative humidity indoor.
- (2) Do not store the capacitors in damp conditions such as water, brine or oil.
- (3) Do not store the capacitors that exposed to hazardous gas such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, ammonium, etc.
- (4) Do not store the capacitors that exposed to ozone, ultraviolet rays or radiation.
- (5) Do not expose the capacitors to acidic or alkaline solutions.
- (6) It is not applied to a regulation of JEDEC J-STD-020(Rev. C).

5. Disposal

Please consult with a local industrial waste disposal specialist when disposing of aluminum electrolytic capacitors.

6. Environmental Consideration

Lelon already have receivd ISO 14000 certificate. Cadmium (Cd), Lead (Pb), Mercury (Hg), Hexavalent Chromium (Cr+6), PBB and PBDE have never been useing in capacitor. If you need "Halogen-free" products, please consult with us.

Precautions and Guidelines for Organic Conductive Polymer Aluminum Capacitors

Organic conductive polymer capacitor (OP-CAP) is specially structured solid aluminum electrolytic capacitor that uses highly conductive polymer electrolytic material.

Please read the following contents in order to get most performance and stable quality by using OP-CAP series products.

1. Guidelines for Circuit design

(1) Polarity

OP-CAP is a solid aluminum electrolytic capacitor with positive and negative electrodes. Make sure of the polarity. If it is used in reverse polarity, leakage current will increase and life span may decrease.

(2) Operating Voltage

Do not apply DC voltage, which exceeds the rated voltage of the capacitor and shall not be reverse voltage. If a voltage exceeding the capacitor's voltage rating is applied, the capacitor may be damaged as leakage current increase. Using capacitors at recommended working voltage prolongs capacitor life. The surge voltage rating is the maximum DC over-voltage to which the capacitors may be subjected of short periods.

(3) Ripple Current

The combined value of DC voltage and the peak AC voltage shall not exceed the rated voltage. The superimposition of a large ripple current increases the rate of heating within the capacitor. This may reduce the service life of the capacitor or damage the capacitor.

(4) Operating Temperature

Use the electrolytic capacitors according to the specified operating temperature range. Usage at room ambient will ensure longer life.

(5) Leakage Current

The initial leakage current shall be within specified levels. Note that the leakage current may increase due to thermal stresses that occur during soldering, etc. Note that increased currents gradually decrease when voltage is applied.

(6) Charge and Discharge

Do not use OP-CAP in circuits where the capacitor is repetitively charged and discharged rapidly. Repetitively charging and discharging rapidly may reduce the capacitance or cause damage due to internal heating. Therefore, protection circuits are recommended to design when rush currents exceed 10A.

(7) Condition of Use

- OP-CAP shall not be used / exposed to the following conditions: (a) Water, saltwater spray, oil or fumes, high humidity or humidity condensation.
- (b) Ambient conditions that include hazardous gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine or bromine gas, ammonia, etc.
- (c) Ozone, ultraviolet rays and radiation.
- (d) Severe vibration or physical shock that exceeds the condition in specification sheets.

(8) Consideration to Circuit Design

- (a) Please make sure the application and mounting conditions that the capacitor will be used are within the conditions specified in the catalog. If the conditions are beyond the conditions specified in the catalog, please contact Lelon.
- (b) Do not design a circuit board so that heat-generating components are places near OP-CAP or reverse side of PCB. A cooling system is recommended.
- (c) Operating temperature, applied voltage and ripple current shall be within specification. The ambient temperature shall not exceed the operating temperature and applied ripple current shall not exceed the allowable ripple current specified in the specification.
- (d) Performances of electrical characteristics of OP-CAP are affected by variation of operating temperature and frequency. Consider this variation designing the circuit.
- (e) When two or more capacitors are connected in parallel, consider the current balance that flow through the capacitors.
- (f) If more than two capacitors are connected in series, make sure the applied voltage will be lower than the rated voltage and that voltage will be applied to each equally using a balancing resistor in parallel with each capacitor.

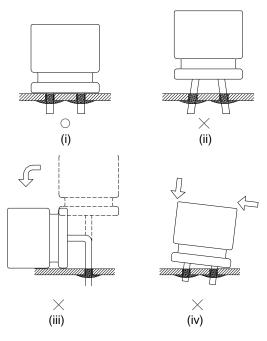
- (g) For appropriate choice of capacitors for circuit that repeat rapid charge and discharge, please consult Lelon.
- (h) Outer sleeve of the capacitor is not guaranteed as an electrical insulator. Do not use a standard sleeve on a capacitor that requires the electrical insulation. When the application requires special electrical insulation, please contact Lelon.
- (i) Do not lie down or twist the capacitor's body after the capacitor is soldered to the PCB.

2. Caution for Assembling Capacitors

(1) Mounting

- (a) OP-CAP cannot be re-used once the capacitor has assembled in the set and power applied.
- (b) OP-CAP may have electrical potential between positive and negative terminal, please discharge through a 1KΩ resistor before use.
- Leakage current of OP-CAP may be increased after storage a long period of time. In this case, we recommend that the OP-CAP shall be applied with DC rated voltage through a resistor of 1K Ω in series for 1 hour at 60°C ~70°C, and then discharge through a resistor of 1K Ω . When the capacitors have been assembled in the board, use a volt regulator to input voltage gradually to the rated volt of the board. (c) Please confirm the rated voltage before mounting.
- (d) Please confirm the polarity before mounting.
- (e) Do not use the OP-CAP that once dropped on the hard floor.
- (f) Do not damage the OP-CAP while mounting.
- (g) OP-CAP shall be mounted that hold spacing on PCB matches the lead pitch of the capacitors.
- (h) During the auto-insertion process and parts inspection, capacitors shall avoid the excessive force and shock.
- (i) Do not apply excessive external force to the lead terminal and the OP-CAP itself.

(2) Soldering


- (a) Be careful of temperature and time when soldering. Dip of flow soldering of the capacitors should be limited at less than 260° C and 10 seconds. Do not dip OP-CAP capacitor's body into melted solder.
- (b) High humidity will affect the solder ability of lead wire and terminals. High temperature will reduce long-term operating life.
- (c) Except SMD type, reflow soldering can not be used for any types of organic conductive polymer aluminum electrolytic capacitors. When using SMD type of OP-CAP, please check the reflow profile. The temperature and duration shall not exceed the specified temperature and duration in the specification. If the temperature or duration is higher than the value specified, please consult Lelon before usage.

(Continued on next page)

Product Guide

- (d) Defective mounting on PCB and improper external strength applied on the lead wires or case body after soldering (see below drawings) may damage insdie structure of the capacitor and may cause short circuit, high leakage current or leakage problems.
 - (i) Good soldering

 - (ii) Hole-to-hole space on board differs from the lead space of lead wires.
 - (iii) Lead wires are bent after soldering.
 - (iv) Case body doesn't stand vertical on board after soldering. Do not bend or twist the capacitor's body after soldering.

(3) Cleaning Circuit Boards After Soldering

Halogenated solvent cleaning is not available for OP-CAP. IPA (Isopropyl Alcohol) is one of the most acceptable cleaning agents; it is necessary to maintain a flux content in the cleaning liquid at a maximum limit of 2 Wt. %. If you use other cleaning agents, please consult Lelon.

3. Maintenance Inspection

Periodical inspection is necessary for using OP-CAP with industrial equipment. The following items should be checked:

- (1) Appearance: bulge, damage, etc.
- (2) Electrical characteristic: Capacitance, dissipation factor. leakage current, and other specified items listed in specification. Lelon recommend replacing the capacitors if the parts are out of specifications.

4. Storage

- (1) OP-CAP should not be stored in high temperature or high humidity condition. The suitable condition is 5° C ~ 35° C and less than 75% in relative humidity indoor.
- (2) Do not store OP-CAP in damp conditions such as water, brine or oil.
- (3) Do not store OP-CAP that exposed to hazardous gas such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine,ammonium, etc.
- (4) Do not store OP-CAP that exposed to ozone, ultraviolet rays or radiation.
- (5) Do not expose OP-CAP to acidic or alkaline solutions.
- (6) Open the bags just before mounting and use up all products once opened. For keeping a good solderability, store the **OP-CAP** as follows:

Series name	Before unseal	After unseal
OCV, OCVZ, OCVU, OVH, OVK	Within 1 year after delivery (Unopened condition)	Within 30 days from opening package
OCR, OCRZ, OCRK, OCRU, ORE	Within 1 year after delivery (Unopened condition)	Within 7 days from opening package

% It is not applied to a regulation of JEDEC J-STD-020 (Rev. C).

5. Estimation of life time

$$L_r = L_0 \times 10^{\frac{T_0 - T_r}{20}}$$

- Lr: Estimated lifetime (hrs)
- L₀: Base lifetime specified at maximum operating temperature with applied the DC voltage
- T₀: Rated maximum operating temperature (°C)
- Tr: Actual ambient temperature (°C)

OP-CAP	Aluminum Electrolytic Capacitors
$105^{\circ}C \ge 2,000 \text{ Hours}$	$105^{\circ}C \ge 2,000$ Hours
$95^{\circ}C \ge 6,324$ Hours	$95^{\circ}C \ge 4,000$ Hours
$85^{\circ}\!C \geqq 20,000$ Hours	$85^{\circ}C \ge 8,000$ Hours
$75^{\circ}C \ge 63,245$ Hours	$75^{\circ}C \ge 16,000$ Hours

Please note that

(1) Maximum life is 15 years

(2) Ripple current in application should be less than or equal to ripple current specified in catalogue

6. Disposal

Please consult with a local industrial waste disposal specialist when disposing of aluminum electrolytic capacitors.

7. Environmental Consideration

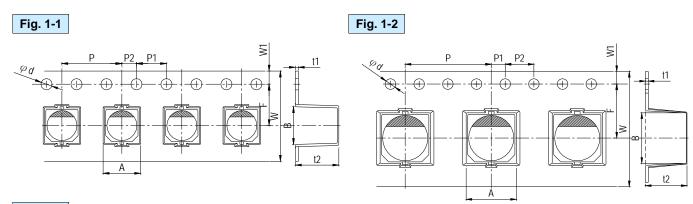
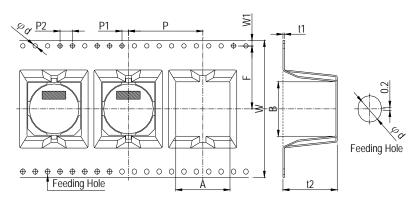
Lelon already have receivd ISO 14000 certificate. Cadmium (Cd), Lead (Pb), Mercury (Hg), Hexavalent Chromium (Cr+6), PBB and PBDE have never been useing in capacitor. If you need "Halogen-free" products, please consult with us.

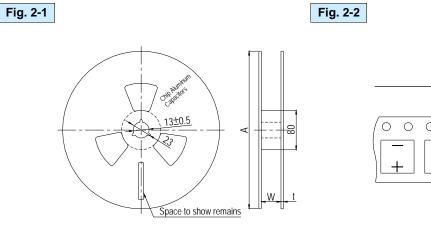
For further details, please refer to

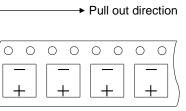
IEC 60384-4 - Fixed capacitors for use in electronic equipment – Part 4: Sectional specification – Aluminium electrolytic capacitors with solid (MnO2) and non-solid electrolyte (Established in January 1995, Revised in March 2007), and

EIAJ RCR-2367B - Guideline of notabilia for fixed aluminium electrolytic capacitors for use in electronic equipment [(Technical Standardization Committee on Passive Components (Established in March 1995, Revised in March 2002)]

1. Carrier Tape


Fig. 1-3



												Unit: mn															
φD×L	A	В	φd	F	Р	P1	P2	t1	t2	W	W1	Fig. No.															
3 ~ 4 × 4.5 ~ 5.3	5.0	5.0		5.5	8				5.8																		
4 × 5.7	5.0	5.0		5.5	8				6.2	12.0		1-1															
5 × 4.5 ~ 5.3	6.0	6.0		5.5	12				5.8																		
5 × 5.7(*)	6.0	6.0		5.5	12				6.2																		
6.3 × 4.5 ~ 5.3									5.8																		
6.3 × 5.7									6.2																		
6.3 × 5.9*	7.0	7.0							6.2																		
6.3 × 7.0*				7.5	12			0.4	6.8	16.0																	
6.3 × 7.7									8.3																		
8 × 6.5									6.8			1-2															
8 × 6.7*	8.7	8.7							6.8																		
8 × 10									11.0																		
8 × 12*			1.5			2.0	4.0		13.0	Ī	1.75																
10 × 7.7*				11.5	16				10.0	24.0																	
10 × 10 (9.9*)	10.7	10.7							11.0																		
10 × 12.7*														_	_									14.0			
12.5 × 13.5	13.4	13.4		14.2	24				15.0	32.0																	
12.5 × 13.5(G)	13.7	13.7		14.2	24				15.0	32.0																	
12.5 × 16	13.4	13.4		14.2	24				17.5	32.0																	
12.5 × 16(G)	13.7	13.7		14.2	24				17.5	44.0																	
16 × 16.5	17.5	17.5		20.2	28			0.5	17.5	44.0		1-3															
16 × 16.5(G)	17.5	17.5		20.2	28				17.5	44.0																	
16 × 21.5	17.5	17.5		20.2	28				22.5	44.0																	
18 × 16.5	19.5	19.5		20.2	32	1			17.5	44.0	1																
18 × 21.5	19.5	19.5		20.2	32	1			22.5	44.0	-																
Tolerance	±0.2	±0.2	+0.1 / -0	±0.1	±0.1	±0.1	±0.1	±0.1	±0.2	±0.3	±0.15																

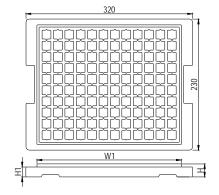
Note: Case size in mark of "*" are for OP-CAP; case size in mark of "(G)" are for "Anti-vibration".

2. Reel Package

								Unit: mm
Case size	$3 \sim 4 \phi$	5ϕ	6.3 <i>¢</i>	$8\phi \times 6.5 \sim 7.0L$	$8\phi \times 10 \sim 12L$	10 <i>¢</i>	12.5 <i>¢</i>	$16 \sim 18\phi$
W	14	14	18	18	26	26	34	46
А	380	380	380	380	380	380	380 / 450	380 / 450
t	2.0	2.0	2.0	2.0	2.0	2.0	3.0	3.0

3. Packing Specifications

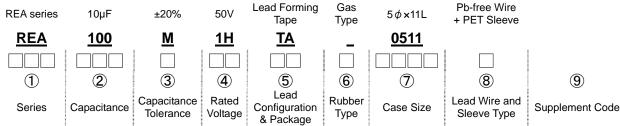
Fig. 3-1 Carrier tape



								Unit: mm
Case size	$3 \sim 4 \phi$	5ϕ	6.3 <i>¢</i>	8φ×6.5L	8¢×10L	10 <i>¢</i>	12.5 <i>¢</i>	$16 \sim 18\phi$
Н	180	220	220	220	310	310	315	390
W, L	385	385	385	385	385	385	385 / 455*	385 / 455*

"* ": Suitable for reel packing is 450 mm

Fig. 3-2


Chip Tray

Dimension ar	nd packag	e quantit	у		Unit: mm
Case size	W1	Н	H1	Q'ty / Tray	Q'ty / Box
12.5φ×13.5L	284	21	18.5	120	600
12.5φ×16L	284	21	18.5	120	600
16 <i>¢</i> ×16.5L	284	28	24.0	80	400
16 <i>¢</i> ×21.5L	284	28	24.0	80	400
18¢×16.5L	284	28	24.0	60	300
18¢×21.5L	284	28	24.0	60	300

Part Numbering System (Radial Type)

Product Code Guide

1) Series:

Series is represented by a three-letter code. When the series name only has two letters, use a hyphen, "-", to fill the third blank. When the series name has 4 letters, use the following series codes. OCRZ→ORZ; OCRK→ORK; OCRU→ORU

2 Capacitance:

Capacitance in μ F is represented by a three-digit code. The first two digits are significant and the third digit indicates the number of zeros following the significant figure. "R" represents the decimal point for capacitance under 10 μ F. Example:

Capacitance	0.1	0.47	1	4.7	10	47	100	470	1,000	4,700	10,000
Part number	0R1	R47	010	4R7	100	470	101	471	102	472	103

③ Tolerance:

J = -5% ~ +5% K = -10% ~ +10% M = -20% ~ +20% V = -10% ~ +20%

④ Rated voltage:

Rated voltage in volts (V) is represented by a two-digit code.

Voltage (WV)	2.5	4	6.3	10	16	20	25	35	40	50	63	80	100
Code	0E	0G	0J	1A	1C	1D	1E	1V	1G	1H	1J	1K	2A
Voltage (WV)	160	200	220	250	330	350	400	420	450	500	525		
Code	2C	2D	2U	2E	2M	2V	2G	2P	2W	2H	2Y		

(5) Lead configuration and package (Please refer to page 17 ~ 19):

BK = Bulk Package	TA = Formed Lead Taping
FC = Formed & Cut Lead	SA = Straight Lead Taping
CC = Cut Lead	SD = Bent Cathode Lead
SF = Snap-in & Formed Cut Lead	BC = Bent & Cut Lead (Leads in Right Direction)
SC = Snap-in & Cut Lead	BU = Bent & Cut Lead (Leads in Left Direction)

(6) Rubber type:

– = Gas es	cape typ	be		F	= Flat	rubbe	er bung	g	

Note 1: For case sizes of $3\phi \times 5L$, $12.5\phi \times 16L$, $16\phi \times 16L$, $16\phi \times 20L$, $18\phi \times 16L$, $18\phi \times 20L$, $18\phi \times 25L$ of aluminum e-caps and $6.3\phi \times 6 \sim 8L$ and $8\phi \times 8L$ in OCRZ, ORE, OCRK series of OP-CAP, flat rubber bung is the standard design.

⑦ Case size:

The first two digits indicate case diameter and the last two digits indicate case length in mm.

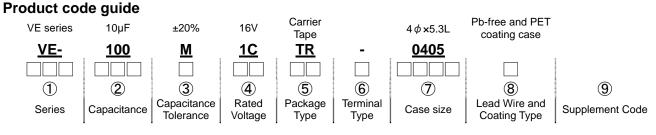
ϕDxL	3×5	4×5	4×7	5×5	5×7	5×11	6.3×5	6.3×5.5	6.3×6.5	6.3×7	6.3×8
Code	0305	0405	0407	0505	0507	0511	0605	0605*	0606*	0607	0608*
ϕDxL	6.3×11	6.3×15	8×5	8×7	8×8	8×9	8×10	8×11.5	8×12	8×15	8×20
Code	0611	0615	0805	0807	0808*	0809	0810*	0811	0812*	0815	0820
$\phi D \mathbf{x} L$	10×9	10×10	10×12.5	10×16	10×20	10×25	10×30	10×35	10×40	10×45	10×50
Code	1009	1010*	1012	1016	1020	1025	1030	1035	1040	1045	1050
ϕDxL	12.5×16	12.5×20	12.5×25	12.5×30	12.5×35	12.5×40	12.5×45	12.5×50	16×16	16×20	16×25
Code	1316	1320	1325	1330	1335	1340	1345	1350	1616	1620	1625
ϕDxL	16×31.5	16×35.5	16×40	16×45	16×50	18×16	18×20	18×25	18×31.5	18×35.5	18×40
Code	1632	1636	1640	1645	1650	1816	1820	1825	1832	1836	1840
ϕDxL	18×45	18×50	20×40	20×45	20×50	22×40	22×45	22×50	25×40		
Code	1845	1850	2040	2045	2050	2240	2245	2250	2540		

Note 1: Size codes with a mark of "*" are for OP-CAP.

Note 2: When a case size is required and not shown in the table, please contact with us for further discussion.

Part Numbering System

(8) Lead wire and sleeve type:


None = Standard design Pb-free wire + PET sleeve (aluminum e-cap) Pb-free wire + Coating case (OP-CAP)	T = Sn-Pb wire + PET sleeve
B = Sn-Bi wire + PET sleeve	G = Pb-free wire + Black PET sleeve (for RGA series only)
K / L = Automotive control code	

* When a supplement code following a blank digit code of lead wire and sleeve type (standard design), use a hyphen, "-", to fill the blank digit. * When automotive control code is required, please contact with us for further discussion.

(9) Supplement code (Optional):

For special control purposes.

Part Numbering System (SMD Type)

1 Series:

Series is represented by a three-letter code. When the series name only has two letters, use a hyphen, "-", to fill the third blank. When the series name has 4 letters, use the following series codes. OCVZ→OVZ; OCVU→OVU

2 ~ 4: Please refer to Part Numbering System (Radial Type)

⑤ Package:

TR	Reel package with reel diameter 380 mm
ТМ	Reel package with reel diameter 450 mm
T-	Tray package for case diameter 12.5 ~ 18mm

(6) Terminal:

-	No dummy terminal
А	For automotive application (10G)
G	For super high G shock application (50G)

⑦ Case size:

The first two digits indicate case diameter and the last two digits indicate case length in mm.

$\phi D \times L$	3x5.3	4×4.5	4×5.3	4×5.7	5x4.5	5×5.3	5×5.7	5x5.9	6.3×4.5	6.3×5.3
ΨDAL	5.5.5	444.5	4×0.0	480.7	54.5	545.5	5×5.7	5×5.5	0.34.3	0.585.5
Code	0305	0404	0405	0406	0504	0505	0506	0506*	0604	0605
φD×L	6.3×5.7	6.3×5.9	6.3×7.0	6.3×7.7	8×6.5	8×6.7	8×10	8×12	10×7.7	10×10(9.9)
Code	0606	0606*	0607*	0607 0608*	0806	0807*	0810	0812*	1008	1010
φD×L	10×12.7	12.5×13.5	12.5×16	16×16.5	16×21.5	18×16.5	18×21.5			
Code	1013*	1313	1316	1616	1621	1816	1821			

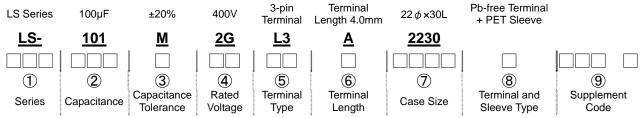
Note 1: Size codes with a mark of " * " are used for OP-CAP only.

Note 2: When a case size is required and not shown in the table, please contact with us for further discussion.

(8) Lead wire and case coating type:

None = Pb free wire + PET coated case (Standard design)	E = Sn-Bi wire + PET coated case	
B = Sn-Bi wire + coating case	K / L = Automotive control code	
* When a supplement code following a blank digit code of lead	d wire and case coating type (standard design), use a hyphen, "	' - ", to fill

* When a supplement code following a blank digit code of lead wire and case coating type (standard design), use a hyphen, " - ", to fill the blank digit.


* When automotive control code is required, please contact with us for further discussion.

(9) Supplement code (Optional):

For special control purpose

Part Numbering System (Snap-in Type)

Product Code Guide

① ~ ④: Please Refer to Part Numbering System (Radial Type)

(5) Terminal type (Refer to page 20):

Terminal type(pins)	2 (Standard)	3		4	5	Vibration- resistant	Horizontal Mounting	
Terminal code		L3	S3	L4	L5	T2	H2	G2

(6) Terminal length:

Terminal length(mm)	4.0	6.3
Terminal code	А	-

⑦ Case Size:

The first two digits indicate case diameter in mm. The last two digits indicate case length in mm.

ϕDxL	20×25	20×30	20×35	20×40	20×45	20×50	22×25	22×30	22×35	22×40	22×45
Code	2025	2030	2035	2040	2045	2050	2225	2230	2235	2240	2245
ϕDxL	22×50	25×25	25×30	25×35	25×40	25×45	25×50	30×25	30×30	30×35	30×40
Code	2250	2525	2530	2535	2540	2545	2550	3025	3030	3035	3040
ϕDxL	30×45	30×50	35×25	35×30	35×35	35×40	35×45	35×50	35×60	35×70	35×80
Code	3045	3050	3525	3530	3535	3540	3545	3550	3560	3570	3580
φ D×L	35×90	35×100	40×40	40×45	40×50	40×60	40×70	40×80	40×90	40×100	
Code	3590	35A0	4040	4045	4050	4060	4070	4080	4090	40A0	

Note: When a case size is required and not shown in the table, please contact with us for further discussion.

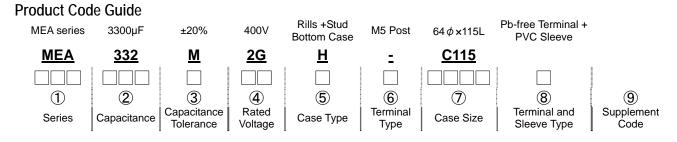
(8) Terminal and sleeve type

None = Pb free terminal + PET sleeve (Standard design)

R = Pb free terminal + PET	sleeve + Rilled

N = Pb free terminal + PET sleeve + No bottom insulation

L = Pb free terminal + PET sleeve + No bottom insulation +Rilled


^t When a supplement code following a blank digit code of terminal and sleeve type (standard design), use a hyphen, " - ", to fill the blank digit.

* When the bottom insulation plate is not required or a rilled construction is necessary, please consult Lelon.

(9) Supplement code (Optional):

For special control purposes

Part Numbering System (Screw Type)

① ~ ④: Please refer to Part Numbering System (Radial Type)

(5) Case type:

- = Plain Case + Mounting clamp	N = Rilled Case + Mounting clamp
X = Plain Case	R = Rilled Case
S = Plain + Stud Bottom Case	H = Rilled + Stud Bottom Case
I = Plain Case + Mounting clamp (2 footed mounting clamp)	

(6) Terminal type:

Terminal Type	Post Diameter (mm)	Height (±1 mm)	For Case Diameters	Code
M5 Post, Small	8	6.5	35	А
M5 Post	10	6.5	51 ~ 90	-
M5 Post, High Current	17.4	6.5	77 ~ 90	С
M6 Post, High Current	17.4	6.5	77 ~ 90	D

⑦ Case size:

The first one digit indicates case diameter and the last three digits indicate case length in mm.

ϕDxL	35×53	35×65	35×75	35×83	35×100	35×121	51×75	51×83	51×96	51×100	51×115
Code	A053	A065	A075	A083	A100	A121	B075	B083	B096	B100	B115
φDxL	51×121	51×130	64×96	64×100	64×115	64×121	64×130	64×144	77×96	77×115	77×121
Code	B121	B130	C096	C100	C115	C121	C130	C144	D096	D115	D121
ϕDxL	77×130	77×144	77×155	90×130	90×157	90×196	90×236				
Code	D130	D144	D155	E130	E157	E196	E236				

Note: When a case size is required and not shown in the table, please contact with us for further discussion.

(8) Terminal and sleeve type

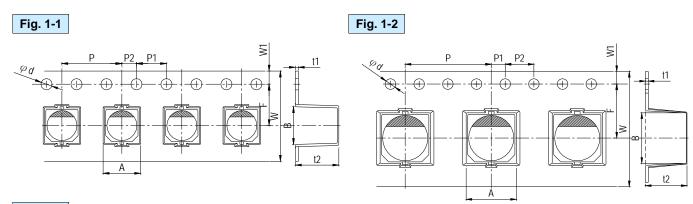
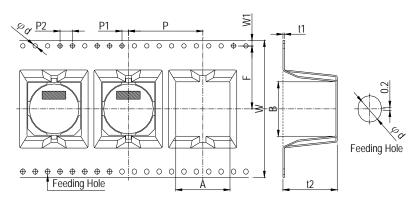
None = Pb-free terminal + PVC sleeve (Standard design)

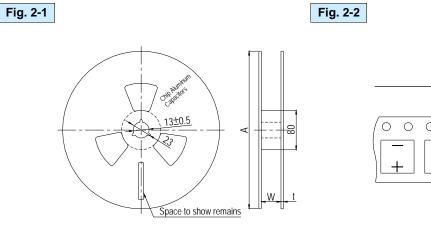
* When a supplement code following a blank digit code of terminal and sleeve type (standard design), use a hyphen, " - ", to fill the blank digit.

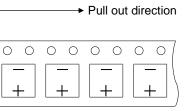
(9) Supplement code (Optional):

For special control purposes

1. Carrier Tape


Fig. 1-3



												Unit: mn
φD×L	A	В	φd	F	Р	P1	P2	t1	t2	W	W1	Fig. No.
3 ~ 4 × 4.5 ~ 5.3	5.0	5.0		5.5	8				5.8			
4 × 5.7	5.0	5.0		5.5	8				6.2	12.0		1-1
5 × 4.5 ~ 5.3	6.0	6.0		5.5	12				5.8			
5 × 5.7(*)	6.0	6.0		5.5	12				6.2			
6.3 × 4.5 ~ 5.3									5.8			
6.3 × 5.7									6.2		1.75	
6.3 × 5.9*	7.0	7.0							6.2			
6.3 × 7.0*				7.5	12			0.4	6.8	16.0		
6.3 × 7.7									8.3			
8 × 6.5									6.8			1-2
8 × 6.7*	8.7	8.7							6.8			
8 × 10									11.0			
8 × 12*			1.5			2.0	4.0		13.0	Ī	1.75	
10 × 7.7*				11.5	16				10.0	24.0		
10 × 10 (9.9*)	10.7	10.7							11.0			
10 × 12.7*									14.0			
12.5 × 13.5	13.4	13.4		14.2	24				15.0	32.0		
12.5 × 13.5(G)	13.7	13.7		14.2	24				15.0	32.0		
12.5 × 16	13.4	13.4		14.2	24				17.5	32.0		
12.5 × 16(G)	13.7	13.7		14.2	24				17.5	44.0		
16 × 16.5	17.5	17.5		20.2	28			0.5	17.5	44.0		1-3
16 × 16.5(G)	17.5	17.5		20.2	28				17.5	44.0		
16 × 21.5	17.5	17.5		20.2	28				22.5	44.0		
18 × 16.5	19.5	19.5		20.2	32	1			17.5	44.0	1	
18 × 21.5	19.5	19.5		20.2	32	1			22.5	44.0	1	
Tolerance	±0.2	±0.2	+0.1 / -0	±0.1	±0.1	±0.1	±0.1	±0.1	±0.2	±0.3	±0.15	

Note: Case size in mark of "*" are for OP-CAP; case size in mark of "(G)" are for "Anti-vibration".

2. Reel Package

								Unit: mm
Case size	$3 \sim 4 \phi$	5ϕ	6.3ϕ	$8\phi \times 6.5 \sim 7.0L$	$8\phi \times 10 \sim 12L$	10 <i>¢</i>	12.5 <i>¢</i>	$16 \sim 18\phi$
W	14	14	18	18	26	26	34	46
А	380	380	380	380	380	380	380 / 450	380 / 450
t	2.0	2.0	2.0	2.0	2.0	2.0	3.0	3.0

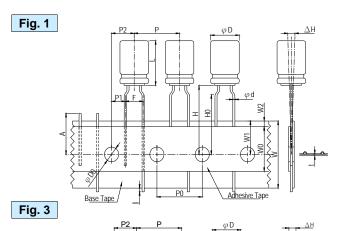
3. Packing Specifications

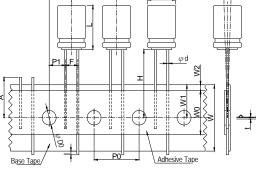
Fig. 3-1 Carrier tape

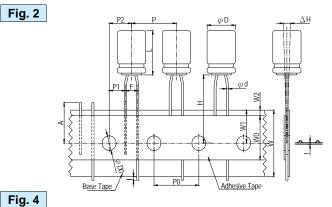


								Unit: mm
Case size	$3 \sim 4 \phi$	5ϕ	6.3 <i>¢</i>	8φ×6.5L	8¢×10L	10 <i>¢</i>	12.5 <i>¢</i>	$16 \sim 18\phi$
Н	180	220	220	220	310	310	315	390
W, L	385	385	385	385	385	385	385 / 455*	385 / 455*

"* ": Suitable for reel packing is 450 mm

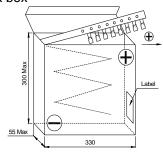

Fig. 3-2


Chip Tray



Dimension and package quantity Unit: mn											
Case size	W1	Q'ty / Box									
12.5¢×13.5L	284	21	18.5	120	600						
12.5¢×16L	284	21	18.5	120	600						
16φ×16.5L	284	28	24.0	80	400						
16φ×21.5L	284	28	24.0	80	400						
18¢×16.5L	284	28	24.0	60	300						
18 <i>¢</i> ×21.5L	284	28	24.0	60	300						

Taping Specifications for Radial Type


ΔH φD sive Tape Base Tap

																U	nit: mm
Packing		ТА			SA												
L	5	7~9	≥ 11				5			≥	7	7~9	11	.5 ~ 20		9 ~	25
Symbol ϕD	3 4* 5 6.3 8	5 6.3 8*	5 6.3	8	3	4*	5	6.3	8	5	6.3	8	8	Tol.	10	12.5	Tol.
ϕ d	0.4 0.45	0.5*	0.5	0.6	0.4	0.4	45	0.45	0.45	0.5	0.5*	0.5	0.6	±0.05	0.6	0.6	±0.05
F	5.0	5.0	5.0	5.0		2.5		2.5	2.5	2.5	2.5	3.5	3.5	+0.8/-0.2	5.0	5.0	+0.8/-0.2
Н	17.5	17.5	18.5	20.0		17.5		17.5	17.5	17.5	17.5	17.5	18.5	±0.75	18.5	18.5	±0.75
HO	16.0	16.0	16.0											±0.5			±0.5
Р	12.7	12.7	12.7			12.7		12.7	12.7	12.7	12.7	12.7	12.7	±1.0	12.7	25.4	±1.0
P0	12.7	12.7	12.7			12.7		12.7	12.7	12.7	12.7	12.7	12.7	±0.2	12.7	12.7	±0.2
P1	3.85	3.85	3.85			5.1		5.1	5.1	5.1	5.1	4.6	4.6	±0.5	3.85	3.85	±0.7
P2	6.35	6.35	6.35			6.35		6.35	6.35	6.35	6.35	6.35	6.35	±1.0	6.35	6.35	±1.3
W	18.0	18.0	18.0			18.0		18.0	18.0	18.0	18.0	18.0	18.0	±0.5	18.0	18.0	±0.5
W0	6.0	10.0	10.0	12.0		6.0		6.0	6.0	10.0	10.0	10.0	12.0	Min.	12.0	12.0	Min.
W1	9.0	9.0	9.0			9.0		9.0	9.0	9.0	9.0	9.0	9.0	±0.5	9.0	9.0	±0.5
W2	1.5	1.5	1.5			1.5		1.5	1.5	1.5	1.5	1.5	1.5	Max.	1.5	1.5	Max.
A	11.0	11.0	11.0			11.0		11.0	11.0	11.0	11.0	11.0	11.0	Max.	11.0	11.0	Max.
φ D0	4.0	4.0	4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0	±0.2	4.0	4.0	±0.2
ΔH	0	0	0			0		0	0	0	0	0	0	±1.0	0	0	±1.0
I	1.0	1.0	1.0			1.0		1.0	1.0	1.0	1.0	1.0	1.0	Max.	1.0	1.0	Max.
t	0.7	0.7	0.7			0.7		0.7	0.7	0.7	0.7	0.7	0.7	±0.2	0.7	0.7	±0.2
Fig. No.	1	1	1			2		3	3	2	3	3	3		3	4	

Remark: 1. 4 ϕ in mark of "*" is 4ϕ x7L the same spec. "SA" packing: 5 ~ 6.3 ϕ x11 ~ 15L in H is 18.5mm. 2. For 3 ~ 8 ϕ x5L, W0 = 10.0mm is available. 3. ϕ d in mark of "*" is 0.6mm for OP-CAP's 6.3 ϕ . 4. The "Tol." of "TA" is the same "SA".

Packaging

Fig. 5 Ammo pack box

Packaging Quantity Unit: pcs/											
ϕ D(mm)	8	10	12.5								
TA, SA		300									
Note: The component shall be oriented on the tape as											

such that the positive lead is leading or the negative lead is leading with customer's request.

Lead Forming and Cutting Specifications for Radial Type

Eorming Cut 4 × 5 0.45	sions F			
Eorming Cut	F			
Eorming Cut 4 × 5 0.45		F'	Н	
Forming Cut		5.0	5.0	
		5.0	5.0 5.0	_
		5.0 5.0	5.0	_
		5.0	5.0	
5x7~11 0.5		5.0	5.0	
L 2.5 Max 6.3 × 7 ~ 15 0.5	2.5	5.0	5.0	
		5.0	5.0	
		5.0	5.0	
	5.0 5.0		4.5 4.5	
	7.5		4.5	
$(3\phi_{\sim}25\phi)$	7.5		4.5	
	10.0		4.5	
	12.5		4.5	
응				
Snap-in Forming				
Cut SF H3 Max ϕ D × L ϕ d H1 H	12 H3	F	Р	Е
$(4\phi \sim 8\phi)$ $(4\phi \sim 8\phi)$ $(4\phi \sim 8\phi)$ $(4\phi \sim 8\times 5)$ $(4\phi \sim $		5.0	1.1	1.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5.0	1.1	1.1
++++=+++++++++++++++++++++++++++++		5.0	1.1	1.1
		5.0	1.1	1.1
$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \frac{6.3 \times 7 \times 15 0.5 5.0 2.0}{8 \times 7 \times 9 0.5 5.0 2.0}$		5.0	1.1	1.1
		5.0	1.1	1.1
		5.0	1.2	1.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5.0	1.2	1.1
		7.5	1.2	1.1
		7.5	1.2	1.1
		10.0	1.2	1.3
Snap-in Cut 25 10 45 2		12.5	1.2	1.3
$(10\phi \sim 25\phi)$ SC			1	·I
$\phi D \times L \phi d$	F ± 0.5	*F	Max	
	2.0			
	2.0			
	3.5			
	5.0		.3	
$ \begin{array}{c c} & & & & \\ \hline & & \\ \hline & & \\ \hline \\ & & \\ \hline \\ \\ \\ \\$	5.0			
	7.5			
3 <u>.7±0.5</u> ¥ ① 18 0.8	7.5		.7	
$1.3 \text{ Max} = 2 \\ 1.3 \text{ Max} = 2 \\ 1.0 \\ 22 \\ 1.0 \\$	10.0		.7	
Cathode Lead 25 1.0	12.5	_	.7	
Bending SD o	O cutting.			
(10 φ ~ 25 φ) (3 +	are differe	nt direc	tion	
from BC.				

Specifications of Packing

Minimum Package Quantity

. Radial Type (For O		bing		ılk		tting
Case size	Box	Carton	Bag	Carton	Bag	Carton
3φ	3,000	30,000	1,000	60,000	1,000	80,000
4 φ	2,000	20,000	1,000	50,000	1,000	80,000
5 φ×5~7L	2,000	20,000	1,000	40,000	1,000	56,000
5 Ø× 11L	2,000	20,000	1,000	30,000	1,000	40,000
6.3 φ×5~7L	2,000	20,000	1,000	30,000	1,000	40,000
6.3 φ× 11L	2,000	20,000	1,000	20,000	1,000	24,000
6.3 φ× 15L	2,000	20,000	1,000	15,000	500	12,000
8 φ×5~9L	1,000	10,000	1,000	15,000	1,000	24,000
8 φ× 11.5L	1,000	10,000	1,000	12,000	1,000	16,000
8 φ× 15L	1,000	10,000	1,000	10,000	800	12,800
8 φ× 20L	1,000	10,000	1,000	8,000	500	8,000
8 φ× 25 ~ 30L	1,000	10,000	500	6,000	500	8,000
8 φ× 35 ~ 50L	1,000	10,000	250	3,000	250	4,000
10 φ×9L	500	5,000	1,000	12,000	500	12,000
10 φ× 12.5L	500	5,000	500	8,000	500	8,000
10 φ× 16L	500	5,000	500	7,000	500	8,000
10 φ× 20L	500	5,000	500	6,000	400	6,400
10 φ× 25L	500	5,000	500	6,000	300	4,800
10 φ× 30 ~ 40L	500	5,000	400	4,000	250	4,000
10 φ× 45 ~ 50L	250	2,500	200	3,000	200	3,200
12.5 φ× 16 ~ 20L	300	3,000	300	3,600	200	3,200
12.5 φ× 25L	300	3,000	250	3,000	200	3,200
12.5 φ× 30L	300	3,000	250	3,000	150	2,400
12.5 φ× 35~40L	300	3,000	250	3,000	150	2,400
12.5 φ× 45 ~ 50L	150	1,500	100	2,000	100	1,600
16 φ× 16 ~ 25L			150	1,800	100	1,600
16 φ× 31.5L			100	1,200	100	1,600
16 φ× 35.5 ~ 40L			100	1,000	75	1,200
16 φ× 45 ~ 50L			50	1,000	50	800
18 φ× 16L			150	1,800	100	1,600
18 φ× 20 ~ 25L			100	1,200	100	1,600
18 φ× 31.5 ~ 35.5L			100	1,200	75	1,200
18 φ× 40L			100	800	50	800
18 φ× 45 ~ 50L			50	600	50	400
22 φ			50	500		400
25 φ× 40L			25	300		400
25 φ× 45 ~ 50L			25	250		400

* According to approval sheet for detailed amount.

2. Snap-in Type		Unit: pcs
Case size	Inner Box	Carton
20ϕ	50	400
22 φ	50	400
25ϕ	50	400
30 <i>φ</i>	50	300
35ϕ	50	300
35φ×55 ~ 100L		100
40φ×55 ~ 75L		100
40 <i>φ</i> ×80 ~ 100L		50

3. SMD Type		Unit: pcs
Case size	Q'ty / Reel	Q'ty / Box
3φ	2,000	20,000
4ϕ	2,000	20,000
5ϕ	1,000	10,000
6.3 <i>¢</i>	1,000	10,000
8φ×6.5 ~ 7L	1,000	10,000
8 <i>¢</i> ×10L	500	5,000
8¢×12L*	400	2,000
10φ×8~10L	500	5,000
10φ×12.7L*	400	2,000
12.5φ×13.5L	250 / 400*	2,000 / 3,200*
12.5 ¢ ×16L	200 / 300*	1,600 / 2,400*
16¢×16.5L	200 / 250*	1,600 / 2,000*
16 <i>ф</i> ×21.5L	150 / 200*	1,200 / 1,600*
18¢×16.5L	150 / 250*	1,200 / 2,000*
18 <i>ф</i> ×21.5L	100 / 150*	800 / 1,200*

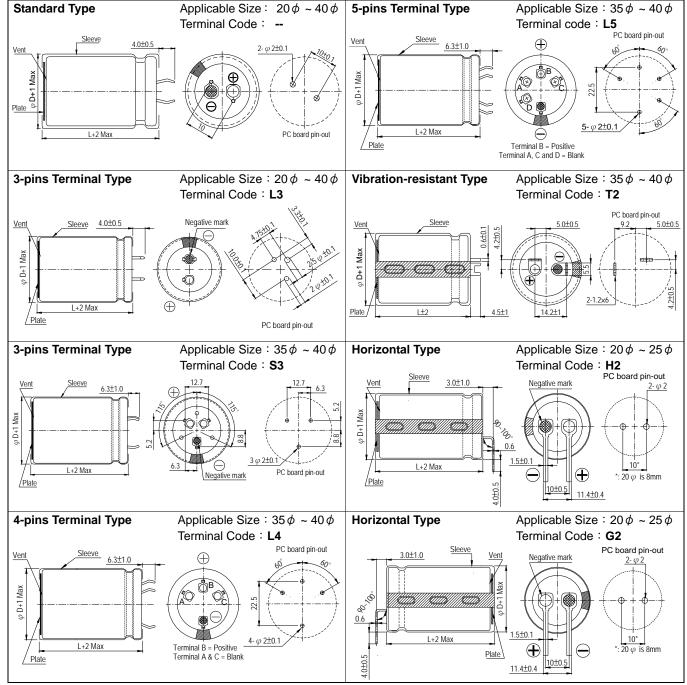
The case size with "*" mark is for OP-CAP; Quantity with "*" mark is reel packing of 450 mm.

Specifications of Package & Terminal Codes for Snap-in Type

Unit: pcs

4. OP-CAP Radial Type

Case size	Тар	ping	Bu	ulk	Cutting			
	Box	Carton	Bag	Carton	Bag	Carton		
5ϕ	2,000	20,000				24,000		
6.3 <i>¢</i>	2,000	20,000		20,000		20,000		
8φ×8 ~ 12L	1,000	10,000	500		500	20,000		
$10 \phi \times 7.7 \sim 10 L$	500	5,000	Ī	10,000		12,000		
10φ×12.5L	500	5,000]	8,000]	8,000		

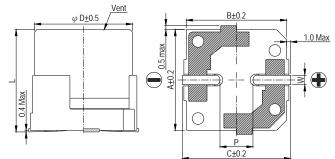

5. Screw Type	Unit: pcs		
Case size	Q'ty / Box		
35ϕ	100		
51 Ø	36		
64ϕ	25		
77 <i>φ</i>	16		
90ϕ	9		

Note: Special packages are available upon request.

Terminal Codes for Snap-in Type

Each terminal type has a restriction on the applicable case size.

For other terminal types that are not illustrated here, please contact us.



Anti-vibration Structure for SMD Type

Available for SMD ϕ 12.5 ~ ϕ 16 in VLV and VLW series Suitable for Automotive Application Peak acceleration: 50G / 30G

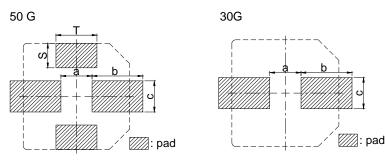

Specifications	Performance		
Peak acceleration: 50G			
Peak to peak amplitude: 1.5mm	Capacitance Change	Within ±5% of initial value	
Frequency: 10 to 2,000 Hz reciprocation for 20 minutes	Dissipation Factor	Within specified value	
Direction and duration of vibration:	Leakage Current	Within specified value	
3 orthogonal directions mutually each for 4 Hrs			

Diagram of Dimensions

Lead Spacing and Diameter Unit: mm ϕD L А В С W P ± 0.2 13.5 ± 0.5 12.5 13.5 14.5 4.4 13.0 1.1 ~ 1.4 12.5 16 ± 0.5 13.0 13.5 14.5 1.1 ~ 1.4 4.4 16 16.5 ± 0.5 16.5 17.0 18.2 1.1 ~ 1.4 6.4

Land Pattern (Anti-vibration Structure)

			Ur	nit: mm
G value	Case size	Land size		
		а	b	С
50 G	12.5ϕ	3.8	6.0	4.8
	16 <i>Φ</i>	5.0	8.0	6.3
30 G	12.5 <i>¢</i>	3.8	6.0	6.0
	16 <i>Φ</i>	5.0	8.0	7.5

When using large surface mount capacitor, please design possibly land pattern area than the recommended pattern dimension in order to increase vibration resistance and avoid to falling off a circuit board.

22