General Specifications X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within $\pm 15\%$ from -55° C to $\pm 125^{\circ}$ C. This capacitance change is non-linear. Capacitance for X7R varies under the influence of electrical operating con-ditions such as voltage and frequency. X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable. #### PART NUMBER (see page 2 for complete part number explanation) NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values. 0805 10.00 pF 10,000 pF 10,000 pF 100 Frequency, MHz 1000 1,000 pF vs. 10,000 pF - X7R 042718 ## **Specifications and Test Methods** | Parame | eter/Test | X7R Specification Limits | Measuring Conditions | | | | | | | | | |------------------------------|--------------------------|--|---|--------------------------|--|--|--|--|--|--|--| | Operating Tem | perature Range | -55°C to +125°C | Temperature C | ycle Chamber | | | | | | | | | · | citance
ion Factor | Within specified tolerance ≤ 10% for ≥ 50V DC rating≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating | Freq.: 1.0 k
Voltage: 1.0
For Cap > 10µF, | Vrms ± .2V | | | | | | | | | Insulation | Resistance | 100,000MΩ or 1000MΩ - μ F, whichever is less | Charge device with 120 ± 5 secs @ ro | - | | | | | | | | | Dielectric | c Strength | No breakdown or visual defects | Charge device with 250% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices. | | | | | | | | | | | Appearance | No defects | Deflection | | | | | | | | | | Resistance to | Capacitance
Variation | ≤ ±12% | Test Time: | 30 seconds √ 1mm/sec | | | | | | | | | Flexure
Stresses | Dissipation
Factor | Meets Initial Values (As Above) | | V | | | | | | | | | | Insulation
Resistance | ≥ Initial Value x 0.3 | 90 | 0 mm | | | | | | | | | Solde | rability | ≥ 95% of each terminal should be covered with fresh solder | Dip device in eutection for 5.0 ± 0. | | | | | | | | | | | Appearance | No defects, <25% leaching of either end terminal | _ | | | | | | | | | | | Capacitance
Variation | ≤ ±7.5% | Dip device in eutectic solder at 260°C for 60seconds. | | | | | | | | | | Resistance to
Solder Heat | Dissipation
Factor | Meets Initial Values (As Above) | Store at room temperatur
measuring elect | | | | | | | | | | | Insulation
Resistance | Meets Initial Values (As Above) |] | | | | | | | | | | | Dielectric
Strength | Meets Initial Values (As Above) | | | | | | | | | | | | Appearance | No visual defects | Step 1: -55°C ± 2° | 30 ± 3 minutes | | | | | | | | | | Capacitance
Variation | ≤ ±7.5% | Step 2: Room Temp | ≤ 3 minutes | | | | | | | | | Thermal
Shock | Dissipation
Factor | Meets Initial Values (As Above) | Step 3: +125°C ± 2° | 30 ± 3 minutes | | | | | | | | | | Insulation
Resistance | Meets Initial Values (As Above) | Step 4: Room Temp | ≤ 3 minutes | | | | | | | | | | Dielectric
Strength | Meets Initial Values (As Above) | Repeat for 5 cycles
24 ± 2 hours at re | | | | | | | | | | | Appearance | No visual defects | Charge device with 1.5 | rated voltage (≤ 10V) in | | | | | | | | | | Capacitance
Variation | ≤ ±12.5% | test chamber set at 125°C ± 2°C for 1000 hours (+48, -0) | | | | | | | | | | Load Life | Dissipation
Factor | ≤ Initial Value x 2.0 (See Above) | If RV > 10V then Life Te
but there are exceptions | | | | | | | | | | | Insulation
Resistance | ≥ Initial Value x 0.3 (See Above) | further details | on exceptions) | | | | | | | | | | Dielectric
Strength | Meets Initial Values (As Above) | Remove from test chamb
temperature for 24 ± 2 h | | | | | | | | | | | Appearance | No visual defects | Store in a test chamb | er set at 85°C ± 2°C/ | | | | | | | | | | Capacitance
Variation | ≤ ±12.5% | 85% ± 5% relative hu
(+48, -0) with rate | • | | | | | | | | | Load
Humidity | Dissipation
Factor | ≤ Initial Value x 2.0 (See Above) | Remove from chamber | | | | | | | | | | | Insulation
Resistance | ≥ Initial Value x 0.3 (See Above) | temperature ar
24 ± 2 hours bei | nd humidity for | | | | | | | | | | Dielectric
Strength | Meets Initial Values (As Above) | | J . | | | | | | | | #### PREFERRED SIZES ARE SHADED | | SIZE | 0101* | 1* 0201 | | | | | | | 0402 | | | | | 0603 | | | | | | | | 0805 | | | | | | | | 1206 | | | | | | | | | | |---------|------------|----------------------|---------------|-----------------|--------------|-------------|----------|---------------------|-----------------|-------------|--------------|--------------|---------------------|---------------------|--------------|-------------------------------------|-------------------------------|--------------|--|-------------|---------|--------|------|-----|-------------|----------|---------|----------|-------------------------------------|---------------------|---------|---------|-------------------------|---------|----------|--------|------|--------------|-----|-----| | Sc | oldering | Reflow Only | | Ref | low | Onl | у | П | Ref | low/ | Wa | ve | | | | F | Reflo | ow/\ | Vave | | | T | | | F | Reflo | w/W | ave | | | Т | | | F | ≀efl• | ow/ | Wav | /e | | | | Pa | ckaging | Paper/Embossed | | All | l Pa | per | | П | A | II Pa | ape | r | | | | | All | Par | oer | | | T | | | Par | oer/l | Ξmb | osse | d | | Т | | | Par | per | /Em | nbos | ssed | | | | | ., mm | 0.40 ± 0.02 | Н | 0.6 | 0 ± 1 | 1.00 ± 0.10 | | | | 1.60 ± 0.15 | | | | | | | 2.01 ± 0.20 | | | | | | | ╁ | 3.20 ± 0.20 | | | | | | | | | | | | | | | | | (L) Le | | (0.016 ± 0.0008) | (0 | | 4 ± 1 | | | (0.040 ± 0.004) | | | | | (0.063 ± 0.006) | | | | | | | | | | | | .008 |) | | | | | | | | | | | | | | | | | mm | 0.20 ± 0.02 | $\overline{}$ | 0.3 | 0 ± 1 | 0.03 | 3 | 0.50 ± 0.10 | | | | | 0.81 ± 0.15 | | | | | | | | _ | _ | | ± 0 | _ | | | ╈ | (0.126 ± 0.008) 1.60 ± 0.20 | | | | | | | | | | | | | (W) V | | (0.008 ± 0.0008) | ((| (0.011 ± 0.001) | | | | | (0.020 ± 0.004) | | | | | (0.032 ± 0.006) | | | | | | | | | | | | .008 |) | | | (0.063 ± 0.008) | | | | | | | | | | | | | mm | 0.10± 0.04 | | 0.1 | 5 ± 1 | 0.05 | 5 | ⇈ | | 25 ± | | | | | | | 0.35 | 5 ± (| 0.15 | | | 一 | | | | 0.50 | ± 0 | .25 | | | т | | | | 0.5 | 0 ± | 0.2 | 5 | | | | (t) Ter | minal (in) | (0.004 ± 0.0016) | (0 | 0.00 | 6 ± | 0.00 |)2) | (| 0.01 | 0 ± | 0.0 | 06) |) | | | (0 | .014 | 1 ± (| 0.00 | 6) | | ı | | | (0 | .020 | ± 0 | .010 |) | | ı | | | (0 | .02 | 0 ± | 0.0 | 10) | | | | V | VVDC | 16 | 6.3 | 10 | 16 | 25 | 50 | 6.3 | 10 | 16 | 3 2 | 5 | 50 | 6.3 | 10 | 16 | 25 | 50 | 10 | 0 20 | 00 2 | 50 | 6.3 | 10 | 16 | 25 | 50 | 100 | 200 | 250 | 6.3 | 3 10 | 0 1 | 6 2 | :5 | 50 | 100 | 200 | 250 | 500 | | Cap | 100 101 | В | Α | Α | Α | Α | Α | | | С | | | С | | | | | G | G | (| 3 | | | | | | | | | | | | $oldsymbol{\mathbb{T}}$ | \top | \Box | \Box | | | | | | (pF) | 150 151 | В | Α | Α | Α | Α | Α | | | С | | | С | | | | | G | G | (| 3 | | | | | | | | | | | | I | \top | \Box | \Box | | | | | | | 220 221 | В | Α | Α | Α | Α | Α | | | С | | | С | | | | | G | G | (| 3 | | Е | Е | Е | Е | Е | Е | E | | | | I | \perp | \Box | | | | | | | | 330 331 | В | Α | Α | Α | Α | Α | | | С | _ | | С | | | | | G | _ | _ | 3 | \Box | | J | J | J | J | J | J | | | | \perp | \perp | \perp | \Box | | | | K | | | 470 471 | В | Α | Α | Α | Α | Α | | | С | | | С | | | | | G | G | (| 3 | | | J | J | J | J | J | J | | | \perp | L | \perp | \Box | | | | | K | | | 680 681 | В | Α | Α | Α | Α | | 匚 | | С | _ | | О | | | | | G | | | 3 | | | J | J | J | J | J | J | | | | L | Ţ | \perp | | | | | K | | | 1000 102 | В | Α | Α | Α | Α | | L | С | С | | | С | | | | | G | | (| 3 | G | | J | J | J | J | J | J | J | | | L | \perp | \perp | | | | J | K | | | 1500 152 | В | Α | Α | Α | Α | | | С | С | | | С | | | | | G | G | | | G | | J | J | J | J | J | J | J | | J | , | I, | J | J | J | J | J | М | | | 2200 222 | В | Α | Α | Α | Α | | | С | С | | | С | | | | | G | | | | G | | J | J | J | J | J | J | J | | J | , | IJ, | J | J | J | J | J | M | | | 3300 332 | | Α | Α | Α | Α | | | С | С | _ | | С | | | | | G | G | | | G | | J | J | J | J | J | J | J | | J | , | Д, | J | J | J | J | J | M | | | 4700 472 | | Α | Α | Α | Α | | | С | С | | | С | | | | | G | | | | G | | J | J | J | J | J | J | J | | J | , | Ц, | J | J | J | J | J | M | | | 6800 682 | | Α | Α | Α | Α | | | С | С | | | С | | | | | G | G | | | G | | J | J | J | J | J | J | J | | J | ١, | J, | J | J | J | J | J | Р | | Сар | 0.01 103 | | Α | Α | Α | Α | | | С | С | | | С | | | | G | G | G | | J | G | | J | J | J | J | J | J | J | | J | , | J, | J | J | J | J | J | Р | | (µF) | 0.015 153 | | | | | | | | С | С | | | С | | | | G | | G | | J | | | J | J | J | J | J | J | N | | J | , | J, | J | J | J | М | J | Q | | | 0.022 223 | | | | | | | | С | С | | | С | | | | G | G | | | \perp | | | J | J | J | J | J | N | N | | J | , | J, | J | J | J | M | J | Q | | | 0.033 333 | | | | | | | | С | С | | | С | | | | G | G | J | | | | | J | J | J | J | N | N | N | | J | , | J, | J | J | J | M | J | Q | | | 0.047 473 | | | | | | | | С | С | | | С | | | G | G | G | J | | ᆚ | | | J | J | J | J | N | N | N | | J | , | Ц, | J | J | J | M | M | | | | 0.068 683 | | | | | | | | С | С | _ | | С | | | G | | G | | | ᆚ | | | J | J | J | J | N | N | | ┸ | J | , | Ц, | J | J | J | Р | M | | | | 0.1 104 | | | | | ┖ | | | С | C | - (| | С | | G | G | | G | J | | \perp | _ | | J | J | J | J | N | N | | L | J | | Ц, | J | J | Р | Р | Р | | | | 0.15 154 | | | | | | | <u> </u> | | | | | | G | _ | G | - | ш | | | 4 | _ | | J | J | J | N | N | | Ļ_ | ┸ | J | 1 | 4 | J | J | Q | Q | | | | | 0.22 224 | | | | | L | | <u> </u> | С | С | (| 0 | | G | G | J | J | J | | ╙ | | ļ | | J | J | N | N | N | | | 丄 | J | 1 | Щ | J. | J | Q | Q | Q | | | | 0.33 334 | | | | | Ļ | <u> </u> | _ | | | ╀ | 4 | _ | J | J | J | J | Ш | | ╀ | 4 | _ | | N | N | N | N | N | | Ļ_ | ┸ | J | 1 | - | VI . | Р | Q | | 丄 | Ш | | | 0.47 474 | | Ш | | | | | С | С | | ┸ | \perp | | J | J | J | J | J | | \perp | \perp | _ | | Ν | N | N | N | N | | ┸ | L | Ν | 1 N | 1 N | И | Р | Q | | 丄 | Ш | | | 0.68 684 | | | | | | | | | ╙ | 丄 | _ | | J | J | J | | | | ┸ | 4 | _ | | N | N | | | | ㄴ | ╙ | ┸ | Ν | | _ | 4 | _ | | Ь. | 丄 | Ш | | | 1.0 105 | | \Box | | | | \perp | С | | \perp | \perp | \downarrow | | J | J | J | J | J | | \perp | \perp | ļ | | N | N | - | - | | | 1 | \perp | Ν | | _ | _ | Ц | | $oxed{oxed}$ | ₩ | Ш | | | 2.2 225 | | \Box | | | \perp | <u> </u> | _ | _ | Ļ | ļ | | | J | J | J | _ | ㄴ | <u> </u> | ┸ | _ | ļ | | Р | Р | Р | P** | | _ | _ | 上 | C | _ | | | Q | Q** | _ | 丄 | Щ | | | 4.7 475 | | \Box | | | \perp | <u> </u> | <u> </u> | Ļ | ╙ | ╀ | _ļ | | J | _ | | 丄 | _ | <u> </u> | ┸ | 4 | | | Р | Р | Р | | | _ | 1 | ┸ | C | | | _ | Q | | ㄴ | 丄 | Щ | | | 10 106 | | Щ | | | \perp | \perp | L | | \perp | \perp | 4 | | | $oxed{oxed}$ | $ldsymbol{ldsymbol{ldsymbol{eta}}}$ | $oxed{igspace}$ | $oxed{oxed}$ | \perp | \perp | \perp | | Р | Р | Р | | \perp | _ | \perp | ╄ | | C | _ | | X | X | | oxdapsilon | 丄 | Щ | | | 22 226 | | | _ | $oxed{oxed}$ | \vdash | \perp | <u> </u> | \perp | \vdash | \perp | 4 | | _ | <u> </u> | <u> </u> | $oldsymbol{oldsymbol{\perp}}$ | \vdash | _ | \bot | \perp | ļ | | | <u> </u> | \vdash | _ | <u> </u> | \vdash | ╀ | Q | _ | _ | 2 | ユ | Ц | | Ļ | ₩ | Щ | | | 47 476 | | \Box | | Щ | \perp | | <u> </u> | _ | ╙ | ╀ | 1 | | _ | | | 丄 | _ | ــــــــــــــــــــــــــــــــــــــ | ┸ | 4 | ļ | | | _ | 辶 | _ | | _ | _ | Q | C | 4 | 4 | ユ | ļ | | ㄴ | Щ | Щ | | | 100 107 | | Щ | | | 1 | \perp | <u> </u> | | 1 | \downarrow | \downarrow | | _ | <u> </u> | <u> </u> | ┞ | _ | _ | ┸ | \perp | | | | <u> </u> | \vdash | | _ | _ | 1 | ┸ | ┸ | 丄 | 4 | ユ | | | igspace | ₩ | Ш | | V | VVDC | 16 | 6.3 | 10 | 16 | 25 | 50 | 50 6.3 10 16 25 50 | | | | | | 6.3 | 10 | 16 | 25 | 50 | 10 | 0 20 | 00 2 | 50 | 6.3 | 10 | 16 | 25 | 50 | 100 | 200 |)[250 | 6.3 | 3 1 | <u>) [1</u> | 6 2 | 5 | 50 | 100 | 200 | 250 | 500 | | | SIZE | 0101 | 020 | 1 | | | | 040 |)2 | | | | | | (| 060 | 3 | | | | | | | 0 | 805 | | | | L | 1206 | | | | | | | | | | | | Letter | А | В | С | E | G | J | K | М | N | Р | Q | Х | Υ | Z | | | | |-----------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|--|--|--| | Max. | 0.33 | 0.22 | 0.56 | 0.71 | 0.90 | 0.94 | 1.02 | 1.27 | 1.40 | 1.52 | 1.78 | 2.29 | 2.54 | 2.79 | | | | | Thickness | (0.013) | (0.009) | (0.022) | (0.028) | (0.035) | (0.037) | (0.040) | (0.050) | (0.055) | (0.060) | (0.070) | (0.090) | (0.100) | (0.110) | | | | | | | | PAF | PER | | | EMBOSSED | | | | | | | | | | | NOTE: Contact factory for non-specified capacitance values ^{*}EIA 01005 **Contact Factory for Specifications ## **Capacitance Range** #### PREFERRED SIZES ARE SHADED | S | SIZE | | | | | 1210 |) | | | | | 18 | 12 | | | | 1825 | | | | 2220 | | 2225 | | | | | | |--------------------|-------------|-------------|--------|----------|----------|--------------------------|----------|----------|--------|----|----------|----------|-------------------|------------|----------|--|---------------|----------|-------------|----------|--------------------|----------|------|------------------------------------|--------------------------------|-----------|--|--| | Sol | dering | 9 | | | Re | flow (| Only | | | | F | Reflo | v Onl | У | | Re | eflow C | Only | | Re | flow (| Only | | Re | flow C | nly | | | | | kagin | | | F | | r/Emb | | d | | | Α | II Em | bosse | ed | | All | Embo | ssed | | | Embo | | | _ | Embos | | | | | | | mm | | | | 3.30 ± 0 | | | | | | 4.50 | ± 0.30 | | | 4 | 1.50 ± 0. | 30 | 5.70 ± 0.40 | | | | | | 5.72 ± 0.25 | | | | | (L) Len | igiri | (in.) | | | (0.1 | 130± 0. | 016) | | | | | (0.177 : | ± 0.012 | 2) | | (0. | 177 ± 0. | 012) | | (0.2 | 25 ± 0. | 016) | | (0.225 ± 0.010) | | | | | | (W) Wi | idth | mm | | | | .50 ± 0. | | | | | | | ± 0.20 | | | | $6.40 \pm 0.$ | | | | $00 \pm 0.$ | | | 6.35 ± 0.25
(0.250 ± 0.010) | | | | | | | | (in.)
mm | | | |)98 ± 0.

.50 ± 0. | | | | | | (0.126 : | ± 0.000
± 0.36 | 9) | | (0.252 ± 0.016)
0.61 ± 0.36 | | | | | 97 ± 0.
64 ± 0. | | | 0.64 ± 0.39 | | | | | | (t) Terminal (in.) | | | | | | .30 ± 0.
)20 ± 0. | | | | | | (0.024 | | !) | | | 024 ± 0. | | | | 125 ± 0. | | | | 0.64 ± 0.39
(0.025 ± 0.015) | | | | | WVDC | | | 10 | 16 | 25 | 50 | 100 | 200 | 500 | 16 | 25 | 50 | 100 | 200 | 500 | 50 | 100 | 200 | 25 | 50 | 100 | 200 | 500 | 50 | 100 2 | 200 | | | | Сар | 100 | 101 | | | | | | | | | | | | | | | | | | | l | | _ | | | | | | | (pF) | 150 | 151 | | | <u> </u> | <u> </u> | <u> </u> | | | | | | | | | | <u> </u> | | | <u> </u> | | -[| | | _W | _ | | | | | 220 | 221 | | <u> </u> | _ | - | <u> </u> | | | | | | | | | | - | | | <u> </u> | ~ (| < | | |)) | T - | | | | | 330
470 | 331
471 | | | _ | \vdash | | - | | | - | - | | <u> </u> | | | + | | | <u> </u> | (| _ ` | 7 1 | | J - | <u> </u> | | | | | 680 | 681 | | | \vdash | \vdash | - | - | | | - | - | \vdash | | | | + | | | - | | | | | | | | | | | 1000 | 102 | | | | \vdash | | | | | | 1 | | | | | + | | | \vdash | | | t | | | 4 | | | | | 1500 | 152 | J | J | J | J | J | J | М | | | | | | | | 1 | | | \vdash | I | I | ľ | I | l | , 1 | | | | | 2200 | 222 | J | J | J | J | J | J | М | 3300 | 332 | J | J | J | J | J | J | М | 4700 | 472 | J | J | J | J | J | J | М | 6800 | 682 | J | J | J | J | J | J | М | Cap | 0.01 | 103 | J | J | J | J | J | J | M | | K | K | K | K | K | M | M | М | | X | X | X | X | М | Р | Р | | | | . , | 0.015 | 153
223 | J
J | J | J | J | J | J | P
Q | | K | K | K | K | P
P | M | M | M | | X | X | X | X | M | P
P | P | | | | | 0.022 | 333 | J | J | J | J | J | J | Q | | K | K | K | K | X | M | M | M
M | | X | X | X | X | M
M | P | Р | | | | | 0.033 | 473 | J | J | J | J | J | J | Q | | K | K | K | K | Z | M | M | M | | X | X | X | X | M | P | P | | | | | 0.058 | 683 | J | J | J | J | J | М | Q | | K | K | K | K | Z | М | M | M | | X | X | X | Х | М | P | P | | | | | 0.1 | 104 | J | J | J | J | J | М | Х | | K | K | K | K | Z | М | М | М | | Х | Х | Х | Х | М | Р | Р | | | | | 0.15 | 154 | J | J | J | J | М | Z | | | K | K | K | Р | Z | М | М | М | | Х | Х | Х | Х | М | Р | Х | | | | | 0.22 | 224 | J | J | J | J | Р | Z | | | K | K | K | Р | Z | М | М | М | | Х | Х | Х | Х | М | Р | Х | | | | | 0.33 | 334 | J | J | J | J | Q | | | | K | K | М | Х | | М | М | | | Х | Х | Х | Х | М | Р | Х | | | | | 0.47 | 474 | М | M | M | M | Q | | | | K | K | Р | Х | | М | M | | | X | X | Х | Х | М | Р | X | | | | | 0.68 | 684
105 | M
N | M | P
P | X | Z | | | | M | M | Q | Z | | M | P | | | X | X | | | M
M | P | X | | | | | 1.5 | 155 | N | N | Z | Z | Z | | | | Z | Z | X
Z | | | Q | P | | | X | X | | | M | X | X
Z | | | | | 2.2 | 225 | X | X | Z | Z | Z | | | | Z | Z | Z | | | Q | | | | X | X | | | M | X | Z | | | | | 3.3 | 335 | X | X | Z | Z | Z | | | | Z | Z | Z | | | | 1 | | İ | X | Z | | İ | | | | | | | | 4.7 | 475 | Z | Z | Z | Z | Z | | | | Z | Z | | | | | | | | Х | Z | | | | | | | | | | 10 | 106 | Z | Z | Z | Z | | | | Z | | | | | | | | | | Z | Z | | | | | | | | | | 22 | 226 | Z | Z | Z | | | | | | | | _ | | | | 1 | | Z | | | | | | | \square | | | | | 47 | 476 | Z | _ | <u> </u> | <u> </u> | <u> </u> | <u> </u> | | | <u> </u> | <u> </u> | <u> </u> | <u> </u> | <u> </u> | | + | <u> </u> | | | <u> </u> | <u> </u> | | | | \square | | | | 1.0 | 100
VVDC | 107 | 10 | 16 | 25 | F0 | 100 | 200 | 500 | 16 | 25 | F0 | 100 | 200 | F00 | 50 | 100 | 200 | 25 | F0 | 100 | 200 | 500 | E0. | 100 | 200 | | | | | | | 10 | 16 | L 25 | 50 | 100 | 200 | 500 | 16 | 25 | 50 | 100 | 200 | 500 | 50 | 100 | 200 | 25 | 50 | | 200 | 500 | 50 100 200 | | | | | | s | SIZE | | | | | 1210 | | | | | | 18 | 12 | | | | 1825 |) | | | 2220 | | | 2225 | | | | | | Lette | er | А | | В | С | | E | G | | J | K | l N | 1 [| N | ГР | | Q | Х | | Υ | Z | | | | | | | | | | | | | | | | _ | | _ | _ | | _ | _ | | _ | $\overline{}$ | | | | | | _ | | | | | | | Letter A B C E G J K M N P Q X Y Z Max. Thickness 0.33 (0.013) 0.22 (0.009) 0.56 (0.022) 0.71 (0.028) 0.94 (0.035) 1.02 (0.037) 1.27 (0.040) 1.40 (0.050) 1.52 (0.060) 1.78 (0.060) 2.29 (0.070) 2.54 (0.070) 2.79 (0.100) 2.10 (0.100) 2.10 (0.100) 2.10 (0.100) 2.10 (0.010) 2. NOTE: Contact factory for non-specified capacitance values