CD4066B CMOS Quad Bilateral Switch

1 Features

- 15-V Digital or ± 7.5-V Peak-to-Peak Switching
- 125- Ω Typical On-State Resistance for 15-V Operation
- Switch On-State Resistance Matched to Within 5Ω Over 15-V Signal-Input Range
- On-State Resistance Flat Over Full Peak-to-Peak Signal Range
- High ON/OFF Output-Voltage Ratio: 80 dB Typical at $\mathrm{f}_{\mathrm{is}}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
- High Degree of Linearity: <0.5\% Distortion Typical at $\mathrm{f}_{\text {is }}=1 \mathrm{kHz}, \mathrm{V}_{\text {is }}=5 \mathrm{~V}_{\mathrm{p} \text {-p }}$ $V_{D D}-V_{S S} \geq 10 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$
- Extremely Low Off-State Switch Leakage, Resulting in Very Low Offset Current and High Effective Off-State Resistance: 10 pA Typical at $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Extremely High Control Input Impedance (Control Circuit Isolated From Signal Circuit): $10^{12} \Omega$ Typical
- Low Crosstalk Between Switches: -50 dB Typical at $\mathrm{f}_{\text {is }}=8 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
- Matched Control-Input to Signal-Output Capacitance: Reduces Output Signal Transients
- Frequency Response,

Switch On $=40 \mathrm{MHz}$ Typical

- 100% Tested for Quiescent Current at 20 V
- $5-\mathrm{V}, 10-\mathrm{V}$, and $15-\mathrm{V}$ Parametric Ratings

2 Applications

- Analog Signal Switching/Multiplexing: Signal Gating, Modulators, Squelch Controls, Demodulators, Choppers, Commutating Switches
- Digital Signal Switching/Multiplexing
- Transmission-Gate Logic Implementation
- Analog-to-Digital and Digital-to-Analog Conversions
- Digital Control of Frequency, Impedance, Phase, and Analog-Signal Gain

3 Description

The CD4066B device is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with the CD4016B device, but exhibits a much lower on-state resistance. In addition, the on-state resistance is relatively constant over the full signalinput range.
The CD4066B device consists of four bilateral switches, each with independent controls. Both the p and the n devices in a given switch are biased on or off simultaneously by the control signal. As shown in Figure 17, the well of the n-channel device on each switch is tied to either the input (when the switch is on) or to V_{SS} (when the switch is off). This configuration eliminates the variation of the switchtransistor threshold voltage with input signal and, thus, keeps the on-state resistance low over the full operating-signal range.
The advantages over single-channel switches include peak input-signal voltage swings equal to the full supply voltage and more constant on-state impedance over the input-signal range. However, for sample-and-hold applications, the CD4016B device is recommended.

Device Information ${ }^{(1)}$

PART NUMBER	PACKAGE	BODY SIZE (NOM)
CD4066B	PDIP (14)	$19.30 \mathrm{~mm} \times 6.35 \mathrm{~mm}$
	CDIP (14)	$19.50 \mathrm{~mm} \times 6.92 \mathrm{~mm}$
	SOIC (14)	$8.65 \mathrm{~mm} \times 3.91 \mathrm{~mm}$
	SOP (14)	$10.30 \mathrm{~mm} \times 5.30 \mathrm{~mm}$
	TSSOP (14)	$5.00 \mathrm{~mm} \times 4.40 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Bidirectional Signal Transmission Via Digital Control Logic

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Revision History 2
5 Pin Configuration and Functions 3
6 Specifications 4
6.1 Absolute Maximum Ratings 4
6.2 ESD Ratings 4
6.3 Recommended Operating Conditions 4
6.4 Thermal Information 4
6.5 Electrical Characteristics. 5
6.6 Switching Characteristics 8
6.7 Typical Characteristics 9
7 Parameter Measurement Information 10
8 Detailed Description 14
8.1 Overview 14
8.2 Functional Block Diagram 14
Changes from Revision D (September 2003) to Revision E Page

- Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section 1
- Deleted Ordering Information table, see POA at the end of the data sheet. 1
- Changed values in the Thermal Information table to align with JEDEC standards 4

5 Pin Configuration and Functions

Pin Functions

PIN		I/O	
NO.	NAME		
DESCRIPTION			
	SIG A IN/OUT	I/O	Input/Output for Switch A
2	SIG A OUT/IN	I/O	Output/Input for Switch A
3	SIG B OUT/IN	I/O	Output/Input for Switch B
4	SIG B IN/OUT	I/O	Input/Output for Switch B
5	CONTROL B	I	Control pin for Switch B
6	CONTROL C	I	Control pin for Switch C
7	VSS	-	Low Voltage Power Pin
8	SIG C IN/OUT	I/O	Input/Output for Switch C
9	SIG C OUT/IN	I/O	Output/Input for Switch C
10	SIG D OUT/IN	I/O	Output/Input for Switch D
11	SIG D IN/OUT	I/O	Input/Output for Switch D
12	CONTROL D	I	Control Pin for D
13	CONTROL A	I	Control Pin for A
14	V		-

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

			MIN	MAX	UNIT
V_{DD}	DC supply-voltage	Voltages referenced to $\mathrm{V}_{\text {SS }}$ pin	-0.5	20	V
$V_{\text {is }}$	Input voltage	All inputs	-0.5	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{IN}	DC input current	Any one input		± 10	mA
$\mathrm{T}_{\text {stg }}$	Storage temperature		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

		VALUE	UNIT
$\mathrm{V}_{\text {(ESD) }} \quad$ Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ${ }^{(1)}$	± 500	V
	Charged device model (CDM), per JEDEC specification JESD22C101, all pins ${ }^{(2)}$	± 1500	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX
$V_{D D}$	Uupply voltage	3	18
T_{A}	Operating free-air temperature	V	

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		CD4066B				UNIT
		$\begin{gathered} \mathbf{N} \\ \text { (PDIP) } \end{gathered}$	$\begin{gathered} \text { D } \\ \text { (SOIC) } \end{gathered}$	$\begin{gathered} \text { NS } \\ \text { (SO) } \end{gathered}$	$\begin{gathered} \text { PW } \\ \text { (TSSOP) } \end{gathered}$	
		14 PINS	14 PINS	14 PINS	14 PINS	
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	53.7	89.5	88.2	119.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(top) }}$	Junction-to-case (top) thermal resistance	41.0	49.7	46.1	48.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	33.6	43.8	47.0	61.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\psi_{J T}$	Junction-to-top characterization parameter	25.8	17.4	16.3	5.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\psi_{\text {JB }}$	Junction-to-board characterization parameter	33.5	43.5	46.6	60.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

CD4066B
www.ti.com
SCHS051G -NOVEMBER 1998-REVISED JUNE 2017

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN TYP	MAX	UNIT
$\mathrm{V}_{\text {os }}$	Switch output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {is }}=0 \mathrm{~V} \end{aligned}$			0.4	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {is }}=5 \mathrm{~V} \end{aligned}$		4.6		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\text {is }}=0 \mathrm{~V} \end{aligned}$			0.5	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{is}}=10 \mathrm{~V} \end{aligned}$		9.5		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{is}}=0 \mathrm{~V} \end{aligned}$			1.5	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{is}}=15 \mathrm{~V} \end{aligned}$		13.5		V
$\Delta r_{\text {on }}$	On-state resistance difference between any two switches	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	15		Ω
			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	10		
			$V_{D D}=15 \mathrm{~V}$	5		
THD	Total harmonic distortion	$\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V},$ $\mathrm{V}_{\mathrm{is}(p-p)}=5 \mathrm{~V}$ (sine wave centered on 0 V), $R_{L}=10 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{is}}=1-\mathrm{kHz}$ sine wave		0.4\%		
	$-3-\mathrm{dB}$ cutoff frequency (switch on)	$V_{C}=V_{D D}=5 \mathrm{~V}, V_{S S}=-5 \mathrm{~V}, V_{i s(p-p)}=5 \mathrm{~V}$$\text { (sine wave centered on } 0 \mathrm{~V} \text {), } \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		40		MHz
	$-50-\mathrm{dB}$ feedthrough frequency (switch off)	$\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{iS}(p-\mathrm{p})}=5 \mathrm{~V}$ (sine wave centered on 0 V), $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		1		MHz
	$-50-\mathrm{dB}$ crosstalk frequency	$\begin{aligned} & V_{C}(A)=V_{D D}=5 V, \\ & V_{C}(B)=V_{S S}=-5 \mathrm{~V}, \\ & V_{\text {is }}(A)=5 V_{p-p}, 50-\Omega \text { source }, \\ & R_{L}=1 \mathrm{k} \Omega \end{aligned}$		8		MHz
$\mathrm{C}_{\text {is }}$	Input capacitance	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{S S}=-5 \mathrm{~V}$		8		pF
Cos_{0}	Output capacitance	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{S S}=-5 \mathrm{~V}$		8		pF
$\mathrm{C}_{\text {ios }}$	Feedthrough	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\text {SS }}=-5 \mathrm{~V}$		0.5		pF
$\mathrm{V}_{\mathrm{IHC}}$	Control input, high voltage	See Figure 7	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	3.5		V
			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	7		
			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$	11		
	Crosstalk (control input to signal output)	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=10 \mathrm{~V} \text { (square wave), } \\ & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \end{aligned}$		50		mV
	Turnon and turnoff propagation delay	$\begin{aligned} & V_{I N}=V_{D D}, t_{r}, t_{f}=20 \mathrm{~ns}, \\ & C_{L}=50 \mathrm{pF}, R_{L}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	35	70	ns
			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	20	40	
			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$	15	30	
	Maximum control input repetition rate	$\begin{array}{\|l\|} \hline V_{\text {is }}=V_{D D}, V_{S S}=G N D, \\ R_{L} 1 \mathrm{k} \Omega \text { to } \mathrm{GND}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{~V}_{\mathrm{C}}=10 \mathrm{~V} \text { (square wave } \\ \text { centered on } 5 \mathrm{~V}), \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \\ \mathrm{~V}_{\text {os }}=1 / 2 \mathrm{~V}_{\text {os }} \text { at } 1 \mathrm{kHz} \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	6		MHz
			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	9		
			$V_{D D}=15 \mathrm{~V}$	9.5		
C_{1}	Input capacitance			5	7.5	pF

Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT	
VILC	Control input, low voltage (max)	$\begin{aligned} & \\|_{\text {is }}<10 \mu A, \\ & V_{\text {is }}=V_{S S}, V_{O S}=V_{D D}, \text { and } \\ & V_{\text {is }}=V_{D D}, V_{O S}=V_{S S} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		1		V	
				$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$		1			
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1			
				$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		1			
				$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		1			
			$V_{D D}=10 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		2			
				$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$		2			
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2			
				$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		2			
				$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		2			
			$V_{D D}=15 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		2			
				$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$		2			
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2			
				$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		2			
				$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		2			
${ }_{\text {IN }}$	Input current (max)	$\begin{aligned} & V_{\text {is }} \leq V_{D D}, V_{D D}-V_{S S}=18 \mathrm{~V}, \\ & V_{C C} \leq V_{D D}-V_{S S} \\ & V_{D D}=18 V \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$				± 0.1	$\mu \mathrm{A}$	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				± 0.1		
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\pm 10^{-5}$	± 0.1		
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$				± 1		
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$				± 1		

6.6 Switching Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	FROM	то	TEST CONDITIONS	V_{cc}	MIN TYP	MAX	UNIT
t_{pd}	Signal input	Signal output	$\begin{aligned} & V_{I N}=V_{D D}, t_{r}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \\ & C_{L}=50 \mathrm{pF}, R_{L}=1 \mathrm{k} \Omega \end{aligned}$	5 V	20	40	ns
				10 V	10	20	
				15 V	7	15	
$\mathrm{t}_{\mathrm{plh}}$	Signal input	Signal output	$\begin{aligned} & V_{I N}=V_{D D}, t_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	5 V	35	70	ns
				10 V	20	40	
				15 V	15	30	
$\mathrm{t}_{\text {phl }}$	Signal input	Signal output	$\begin{aligned} & V_{I N}=V_{D D}, t_{r}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \\ & C_{L}=50 \mathrm{pF}, R_{L}=1 \mathrm{k} \Omega \end{aligned}$	5 V	35	70	ns
				10 V	20	40	
				15 V	15	30	

6.7 Typical Characteristics

92CS-27326RI

Figure 1. Typical ON-State Resistance vs Input Signal Voltage (All Types)

Figure 3. Typical ON-State Resistance vs Input Signal Voltage (All Types)

92CS-30919

Figure 5. Typical ON Characteristics for 1 of 4 Channels

92CS-27327RI

Figure 2. Typical ON-State Resistance vs Input Signal Voltage (All Types)

Figure 4. Typical ON-State Resistance vs Input Signal Voltage (All Types)

Figure 6. Power Dissipation per Package vs Switching Frequency

7 Parameter Measurement Information

Figure 7. Determination of r_{on} as a Test Condition for Control-Input High-Voltage $\left(\mathrm{V}_{\mathrm{Hc}}\right)$ Specification

Figure 8. Channel On-State Resistance Measurement Circuit

Measured on Boonton capacitance bridge, model 75 a (1 MHz); test-fixture capacitance nulled out.

Figure 9. Typical On Characteristics for One of Four Channels

Parameter Measurement Information (continued)

92CS-30922
All unused terminals are connected to V_{SS}.
Figure 10. Off-Switch Input or Output Leakage

92CS-30923
All unused terminals are connected to V_{SS}.

Figure 11. Propagation Delay Time Signal Input $\left(\mathrm{V}_{\text {is }}\right)$ to Signal Output ($\mathrm{V}_{\text {os }}$)

92CS-30924
All unused terminals are connected to $\mathrm{V}_{\text {SS }}$.
Figure 12. Crosstalk-Control Input to Signal Output

Parameter Measurement Information (continued)

Copyright © 2016, Texas Instruments Incorporated
All unused pins are connected to $\mathrm{V}_{\text {SS }}$
Delay is measured at $\mathrm{V}_{\text {os }}$ level of $+10 \%$ from ground (turn-on) or on-state output level (turn-off).
Figure 13. Propagation Delay, $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ Control-Signal Output

Copyright © 2016, Texas Instruments Incorporated
All unused pins are connected to V_{SS}.
Figure 14. Maximum Allowable Control-Input Repetition Rate

Parameter Measurement Information (continued)

92CS-27555

Measure inputs sequentially to both V_{DD} and V_{SS}. Connect all unused inputs to either V_{DD} or V_{SS}. Measure control inputs only.
Figure 15. Input Leakage-Current Test Circuit

Figure 16. Four-Channel PAM Multiplex System Diagram

8 Detailed Description

8.1 Overview

CD4066B has four independent digitally controlled analog switches with a bias voltage of $\mathrm{V}_{\text {SS }}$ to allow for different voltage levels to be used for low output. Both the p and the n devices in a given switch are biased on or off simultaneously by the control signal. As shown in Figure 17, the well of the n-channel device on each switch is tied to either the input (when the switch is on) or to $\mathrm{V}_{S S}$ (when the switch is off). Thus when the control of the device is low, the output of the switch goes to V_{SS} while when the control is high the output of the device goes to $V_{D D}$.

8.2 Functional Block Diagram

(1) All control inputs are protected by the CMOS protection network.
(2) All p substrates are connected to $V_{D D}$.
(3) Normal operation control-line biasing: switch on (logic 1), $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}$; switch off (logic 0), $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{SS}}$.
(4) Signal-level range: $\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {is }} \leq \mathrm{V}_{\mathrm{DD}}$.

Figure 17. Schematic Diagram of One-of-Four Identical Switches and Associated Control Circuitry

8.3 Feature Description

Each switch has different control pins, which allows for more options for the outputs. Bias Voltage allows the device to output a voltage other than 0 V when the device control is low. The CD4066B has a large absolute maximum voltage for V_{DD} of 20 V .

8.4 Device Functional Modes

Table 1 lists the functions of this device.

Table 1. Function Table

INPUTS		OUTPUT
SIG IN/OUT	CONTROL	SIG OUT/IN
H	H	H
L	H	L
X	L	$\mathrm{Hi}-Z$

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the Tl component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

In applications that employ separate power sources to drive V_{DD} and the signal inputs, the V_{DD} current capability should exceed $V_{D D} / R_{L}$ (R_{L} = effective external load of the four CD4066B device bilateral switches). This provision avoids any permanent current flow or clamp action on the $V_{D D}$ supply when power is applied or removed from the CD4066B device.

In certain applications, the external load-resistor current can include both V_{DD} and signal-line components. To avoid drawing $V_{D D}$ current when switch current flows into pins 1, 4, 8, or 11, the voltage drop across the bidirectional switch must not exceed 0.8 V (calculated from $r_{\text {on }}$ values shown).
No $V_{D D}$ current flows through R_{L} if the switch current flows into pins $2,3,9$, or 10.

9.2 Typical Application

92CS-30927
Figure 18. Bidirectional Signal Transmission Through Digital Control Logic

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Avoid bus contention because it can drive currents in excess of maximum limits. The high drive also creates fast edges into light loads, so consider routing and load conditions to prevent ringing.

9.2.2 Detailed Design Procedure

1. Recommended Input Conditions:

- For rise time and fall time specifications, see $\Delta \mathrm{t} / \Delta \mathrm{v}$ in Recommended Operating Conditions.
- For specified high and low levels, see V_{IH} and V_{IL} in Recommended Operating Conditions.

2. Recommended Output Conditions:

- Load currents should not exceed $\pm 10 \mathrm{~mA}$.

Typical Application (continued)

9.2.3 Application Curve

Figure 19. Power Dissipation vs. Switching Frequency

10 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in Recommended Operating Conditions.
Each VCC pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, $0.1-\mu \mathrm{F}$ is recommended; if there are multiple VCC pins, then $0.01-\mu \mathrm{F}$ or $0.022-\mu \mathrm{F}$ is recommended for each power pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. A $0.1-\mu \mathrm{F}$ and a $1-\mu \mathrm{F}$ are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices inputs must never float.
In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they are tied to GND or VCC, whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it disables the output section of the part when asserted. This does not disable the input section of the I/Os, so they cannot float when disabled.

11.2 Layout Example

Figure 20. Diagram for Unused Inputs

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect Tl's views; see TI's Terms of Use.

TI E2E ${ }^{\text {TM }}$ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.5 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. INSTRUMENTS
www.ti.com

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
CD4066BE	ACTIVE	PDIP	N	14	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU \| CU SN	N / A for Pkg Type	-55 to 125	CD4066BE	Samples
CD4066BEE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type	-55 to 125	CD4066BE	Samples
CD4066BF	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD4066BF	Samples
CD4066BF3A	ACTIVE	CDIP	J	14	1	TBD	A42	N/ A for Pkg Type	-55 to 125	CD4066BF3A	Samples
CD4066BM	ACTIVE	SOIC	D	14	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4066BM	Samples
CD4066BM96	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU \| CU SN	Level-1-260C-UNLIM	-55 to 125	CD4066BM	Samples
CD4066BM96E4	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4066BM	Samples
CD4066BM96G4	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4066BM	Samples
CD4066BMT	ACTIVE	SOIC	D	14	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4066BM	Samples
CD4066BNS	ACTIVE	SO	NS	14	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		CD4066B	Samples
CD4066BNSR	ACTIVE	SO	NS	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4066B	Samples
CD4066BPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM066B	Samples
CD4066BPWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM066B	Samples
CD4066BPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU \| CU SN	Level-1-260C-UNLIM	-55 to 125	CM066B	Samples
CD4066BPWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM066B	Samples
JM38510/05852BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { JM38510/ } \\ & \text { 05852BCA } \end{aligned}$	Samples
M38510/05852BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \hline \text { JM38510/ } \\ & \text { 05852BCA } \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD4066B, CD4066B-MIL :

- Catalog: CD4066B
- Automotive: CD4066B-Q1, CD4066B-Q1
- Military: CD4066B-MIL

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Military - QML certified for Military and Defense Applications

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 $(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CD4066BM96 | SOIC | D | 14 | 2500 | 330.0 | 16.8 | 6.5 | 9.5 | 2.3 | 8.0 | 16.0 | Q1 |
| CD4066BM96 | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 |
| CD4066BM96 | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 |
| CD4066BM96G4 | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 |
| CD4066BM96G4 | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 |
| CD4066BMT | SOIC | D | 14 | 250 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 |
| CD4066BNSR | SO | NS | 14 | 2000 | 330.0 | 16.4 | 8.2 | 10.5 | 2.5 | 12.0 | 16.0 | Q1 |
| CD4066BPWR | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |
| CD4066BPWR | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |
| CD4066BPWRG4 | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD4066BM96	SOIC	D	14	2500	364.0	364.0	27.0
CD4066BM96	SOIC	D	14	2500	367.0	367.0	38.0
CD4066BM96	SOIC	D	14	2500	333.2	345.9	28.6
CD4066BM96G4	SOIC	D	14	2500	367.0	367.0	38.0
CD4066BM96G4	SOIC	D	14	2500	333.2	345.9	28.6
CD4066BMT	SOIC	D	14	250	210.0	185.0	35.0
CD4066BNSR	SO	NS	14	2000	367.0	367.0	38.0
CD4066BPWR	TSSOP	PW	14	2000	364.0	364.0	27.0
CD4066BPWR	TSSOP	PW	14	2000	367.0	367.0	35.0
CD4066BPWRG4	TSSOP	PW	14	2000	367.0	367.0	35.0

GENERIC PACKAGE VIEW

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES:

1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This package is hermitically sealed with a ceramic lid using glass frit.
4. Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
5. Falls within MIL-STD-1835 and GDIP1-T14.

D (R-PDSO-G14)
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $0.006(0,15)$ each side.
(D) Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side.
E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
(D) Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

