

0.560-INCH SEVEN SEGMENT DISPLAYS

ORANGE MAN6600 SERIES

DESCRIPTION

The MAN6600 Series is a family of large digits which includes double and single digits. The series features the sculptured font which minimizes "gappiness" at the segment intersections. Available models include two-digit, one and one-half digits with polarity sign, single digits, and single polarity/overflow digits. All models have right hand decimal points and are available in common anode or common cathode configuration. Units are constructed with Orange face and segment color.

FEATURES

- High performance nitrogen-doped GaAsP on GaP
- Large, easy to read, digits
- Common anode or common cathode models
- Fast switching excellent for multiplexing
- Low power consumption
- Bold solid segments that are highly legible
- Solid state reliability long operation life
- Rugged plastic construction
- Directly compatible with integrated circuits
- High brightness with high contrast
- Categorized for Luminous Intensity (See Note 6)
- Wide viewing angle...150°
- Low forward voltage
- Two-digit package simplifies alignment and assembly

APPLICATIONS

For industrial and consumer applications such as:

- Digital readout displays
- Instrument panels
- Point of sale equipment
- Digital clocks
- TV and radios

PART NUMBER	COLOR	COLOR DESCRIPTION		PIN OUT SPECIFICATION	
MAN6610	Orange	2 Digit; Common Anode; Rt. Hand Decimal	Α	A	
MAN6630	Orange	11/2 Digit; Common Anode; Overflow ±1.8; Rt. Hand Decimal	В	В	
MAN6640	Orange	2 Digit; Common Cathode; Rt. Hand Decimal	Α	С	
MAN6650	Orange	1½ Digit; Common Cathode; Overflow ±1.8; Rt. Hand			
		Decimal	В	D	
MAN6660	Orange	Single Digit; Common Anode; Rt. Hand Decimal	С	Е	
MAN6675	Orange	Single Digit; Common Anode; Overflow ±1.0; Rt. Hand Decimal	D	G	
MAN6680	Orange	Single Digit; Common Cathode; Rt. Hand Decimal	С	F	
MAN6695	Orange	Single Digit; Common Cathode; Overflow ±1.0; Rt. Hand Decimal	D	Н	

RECOMMENDED OPTICAL FILTERS

For optimum ON and OFF contrast, one of the following filters or equivalents should be used over the display:

DEVICE TYPE

FILTE

MAN6600 Series

Panelgraphic Scarlet 65 Homalite 100-1670

0.560-INCH **SEVEN SEGMENT DISPLAYS**

	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Luminous Intensity, digit average (See Note 1)	510	2200		μcd	I _F =10 mA
Peak emission wavelength		630		nm	
Spectral line half width		40		nm	
Forward voltage Segment Decimal point			2.5 2.5	V V	I _F =20 mA I _F =20 mA
Dynamic resistance Segment Decimal point		26 26		Ω	I _F =20 mA I _F =20 mA
Capacitance Segment Decimal point		35 35		pF pF	V=0 V=0
Reverse current Segment Decimal point			100 100	μΑ μΑ	V _R =3.0 V V _R =3.0 V
Ratio I _L		-	2:1	_	I _F =10 mA

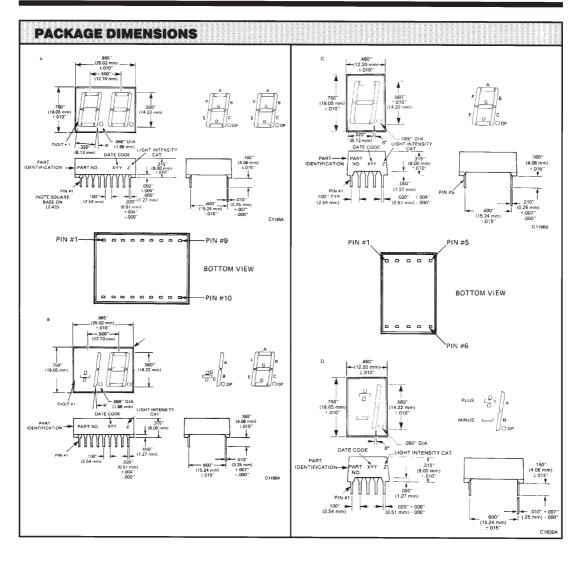
	MAN6610 MAN6640	MAN6630 MAN6650	MAN6660 MAN6680	MAN6675 MAN6695
Power dissipation at 25°C ambient	1200 mW	1050 mW	600 mW	375 mW
Derate linearly from 50°C	−17 mW/°C	-15.0 mW/°C	-8.6 mW/°C	−5.4 mW/°C
Storage and operating temperature	-40°C to +85°C	-40°C to +85°C	-40°C to +85°C	-40°C to +85°C
Continuous forward current				
Total	480 mA	420 mA	240 mA	150 mA
Per segment	30 mA	30 mA	30 mA	30 mA
Decimal point	30 mA	30 mA	30 mA	30 mA
Reverse voltage				
Per segment	6.0 V	6.0 V	6.0 V	6.0 V
Decimal point	6.0 V	6.0 V	6.0 V	6.0 V
Soldering time at 260°C				
(See Notes 3 and 4)	5 sec.	5 sec.	5 sec.	5 sec.

TYPICAL THERMAL CHARACTERISTICS	
Thermal resistance junction to free air Φ_{JA} . Wavelength temperature coefficient (case temperature).	160°C/W
Forward voltage temperature coefficient	–2.0 mV/°C

NOTES

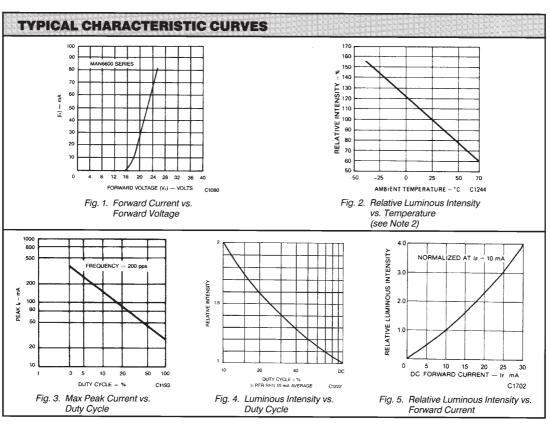
- The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total number of segments. Intensity will not vary more than ±33.3% between all segments within a digit.
 The curve in Figure 3 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating temperature

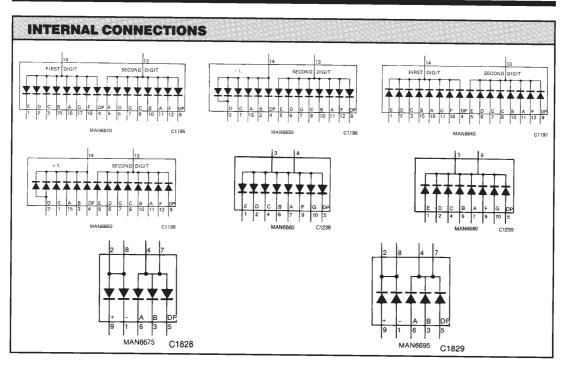
- range.


 3. Leads of the device immersed to 1/16 inch from the body. Maximum device surface temperature is 140°C.

 4. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.

 5. All displays are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part number.


0.560-INCH SEVEN SEGMENT DISPLAYS


0.560-INCH SEVEN SEGMENT DISPLAYS

Pin No.	ELECTRICAL CONNECTIONS							
	A MAN6610	B MAN6630	C MAN6640	D MAN6650	E MAN6660	F MAN6680	G MAN6675	H MAN6698
1	E Cath. (#1)	C Cath. (#1)	E An. (#1)	C An. (#1)	E Cath.	E An.	Minus Cath.	Minus An.
2	D Cath. (#1)	D Cath. (#1)	D An. (#1)	D An. (#1)	D Cath.	D An.	Com. An. ±	Com. Cath.
3	C Cath. (#1)	B Cath. (#1)	C An. (#1)	B An. (#1)	Com. An.	Com. Cath.	Seg. B Cath.	Seg. B An.
4	DP Cath. (#1)	DP Cath. (#1)	DP An. (#1)	DP An. (#1)	C Cath.	C An.	Com. An. A, B, DP	Com. Cath. A, B, DP
5	E Cath. (#2)	E Cath. (#2)	E An. (#2)	E An. (#2)	DP Cath.	DP An.	DP Cath.	DP An.
6	D Cath. (#2)	D Cath. (#2)	D An. (#2)	D An. (#2)	B Cath.	B An.	Seg. A Cath.	Seg. A An.
7	G Cath. (#2)	G Cath. (#2)	G An. (#2)	G An. (#2)	A Cath.	A An.	Com. An. A, B, DP	Com. Cath. A, B, DP
8	C Cath. (#2)	C Cath. (#2)	C An. (#2)	C An. (#2)	Com. An.	Com. Cath.	Com. An. ±	Com. Cath.
9	DP Cath. (#2)	DP Cath. (#2)	DP An. (#2)	DP An. (#2)	F Cath.	F An.	Plus Cath.	Plus An.
10	B Cath. (#2)	B Cath. (#2)	B An. (#2)	B An. (#2)	G Cath.	G An.	N.C.	N.C.
11	A Cath. (#2)	A Cath. (#2)	A An. (#2)	A An. (#2)			1	
12	F Cath. (#2)	F Cath. (#2)	F An. (#2)	F An. (#2)				
13	Digit #2 An.	Digit #2 An.	Digit #2 Cath.	Digit #2 Cath.				
14	Digit #1 An.	Digit #1 An.	Digit #1 Cath.	Digit #1 Cath.		1		
15	B Cath. (#1)	A Cath. (#1)	B Ān. (#1)	A An. (#1)		1	1	1
16	A Cath. (#1)	N.C.	A An. (#1)	N.C.		1		1
17	G Cath. (#1)	N.C.	G An. (#1)	N.C.	1	1		1
18	F Cath. (#1)	N.C.	F An. (#1)	N.C.		1		1

0.560-INCH SEVEN SEGMENT DISPLAYS

0.560-INCH SEVEN SEGMENT DISPLAYS

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.