

Caractéristiques

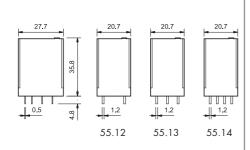
Relais pour usage général avec 2, 3 ou 4 contacts

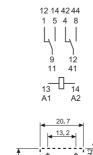
Montage sur circuit imprimé 55.12 - 2 contacts 10 A 55.13 - 3 contacts 10 A 55.14 - 4 contacts 7 A

- Bobine AC ou DC
- Contacts sans Cadmium (version préférentielle)
- Options matériau des contacts
- Disponible en version RT III (lavable)

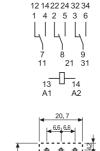
55.12

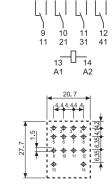
· 2 contacts, 10 A · Montage sur circuit imprimé 55.13


• 3 contacts, 10 A • Montage sur circuit imprimé 55.14


• 4 contacts, 7 A · Montage sur circuit imprimé

1214222432344244


1 5 2 6 3 7 4 8


POUR UL HORSEPOWER ET PILOT DUTY RATINGS VOIR

Vue coté cuivre

Vue coté cuivre

Vue coté cuivre

"Informations techniques générales" page V					
Caractéristiques des contacts					
Configuration des contacts	2 inverseurs	3 inverseurs	4 inverseurs		
Courant nominal/Courant max. instantané A	10/20	10/20	7/15		
Tension nominale/Tension max. commutable V AC	250/400	250/400	250/250		
Charge nominale en AC1 VA	2500	2500	1750		
Charge nominale en AC15 (230 V AC) VA	500	500	350		
Puissance moteur monophasé (230 V AC) kW	0.37	0.37	0.125		
Pouvoir de coupure en DC1: 30/110/220 VA	10/0.25/0.12	10/0.25/0.12	7/0.25/0.12		
Charge mini commutable mW (V/mA)	300 (5/5)	300 (5/5)	300 (5/5)		
Matériau des contacts standard	AgNi	AgNi	AgNi		
Caractéristiques de la bobine					
Tension d'alimentation V AC (50/60 Hz)	6 - 12 - 24 - 48 - 60 - 110 - 120 - 230 - 240				
nominale (U _N) V DC	6 -	20			
Puissance nominale AC/DC VA (50 Hz)/W	1.5/1	1.5/1	1.5/1		
Plage d'utilisation AC	(0.81.1)U _N	(0.81.1)U _N	(0.81.1)U _N		

Tension de maintien

Tension de relâchement

Température ambiante

Catégorie de protection

Homologations (suivant les types)

Caractéristiques générales Durée de vie mécanique AC/DC

Durée de vie électrique à pleine charge AC1 cycles

Rigidité diélectrique entre contacts ouverts V AC

Temps de réponse: excitation/désexcitation Isolement entre bobine et contacts (1.2/50 µs) kV

ANCE

 $(0.8...1.1)U_N$

 $0.8 \, U_N / 0.5 \, U_N$

 $0.2 \, U_N / 0.1 \, U_N$

20 . 106/50 . 106

200 · 103

10/5

4

1000

-40...+85

RT I

DC

AC/DC

AC/DC

cycles

 $(0.8...1.1)U_N$

 $0.8 \, U_N / 0.5 \, U_N$

 $0.2 \, U_N / 0.1 \, U_N$

20 . 106/50 . 106

200 · 103

10/5

4

1000

-40...+85

RT I

(0.8...1.1)U_N

 $0.8 \, U_N / 0.5 \, U_N$

 $0.2 \, U_N / 0.1 \, U_N$

20 . 106/50 . 106

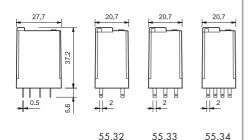
150 · 10³

11/3

4

1000

-40...+85 RT I



Caractéristiques

Relais pour usage général avec 2, 3 ou 4 contacts

Embrochable sur support 55.32 - 2 contacts 10 A 55.33 - 3 contacts 10 A 55.34 - 4 contacts 7 A

- Bouton test verrouillable et indicateur mécanique en version standard sur les types 2 et 4 contacts
- Bobine AC ou DC
- UL Listing (pour la combinaison relais + support)
- Contacts sans Cadmium (version préférentielle)
- Options pour matériau des contacts
- Supports série 94
- Modules de signalisation et protection CEM
- Modules de temporisation série 86
- Brevet Européen

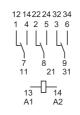
POUR UL HORSEPOWER ET PILOT DUTY RATINGS VOIR "Informations techniques générales" page V

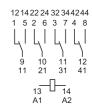
55.32

• 2 contacts, 10 A

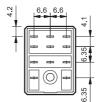
55.33

• 3 contacts, 10 A


55.34



• 4 contacts, 7 A • Montage sur support série 94 • Montage sur support série 94 • Montage sur support série 94

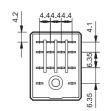


2 inverseurs

10/20

250/400

2500



3 inverseurs

10/20

250/400

2500

4 inverseurs

7/15

250/250

1750

	. •				
Caractéristiques des contacts					
Configuration des contacts					
Courant nominal/Courant m	ax. instantané A				
Tension nominale/Tension max	. commutable V AC				
Charge nominale en AC1 VA					
Charge nominale en AC15 (230 V AC)					
Puissance moteur monophasé (230 V AC) kW					
Pouvoir de coupure en DC1: 30/110/220 VA					
Charge mini commutable mW (V/mA)					
Matériau des contacts standard					
Caractéristiques de la bobin	е				
Tension d'alimentation	V AC (50/60 Hz)				
nominale (U _N)	V DC				
Puissance nominale AC/DC	VA (50 Hz)/W				
Plage d'utilisation	AC				

nominale (U _N)	V DC					
Puissance nominale AC/DC	VA (50 Hz)/W					
Plage d'utilisation	AC					
	DC					
Tension de maintien	AC/DC					
Tension de relâchement	AC/DC					
Caractéristiques générales						
Durée de vie mécanique AC/DC cycles						
Durée de vie électrique à pleine charge AC1 cycles						
Temps de réponse: excitation/désexcitation ms						
Isolement entre bobine et contacts (1.2/50 µs) kV						
Rigidité diélectrique entre contacts ouverts V AC						
Température ambiante °C						

Ά	500
٧	0.37
Ά	10/0.25/0.12
۹)	300 (5/5)

 ϵ

(1)

(D) (FI)

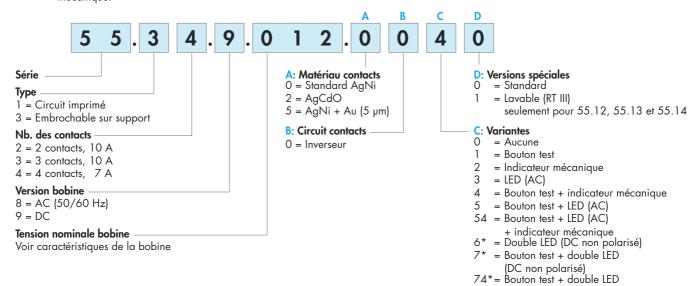
Œ

500 350 0.125 0.37 10/0.25/0.12 7/0.25/0.12 300 (5/5) 300 (5/5) AgNi AgNi AgNi 6 - 12 - 24 - 48 - 60 - 110 - 120 - 230 - 240 6 - 12 - 24 - 48 - 60 - 110 - 125 - 220 1.5/1 1.5/1 1.5/1 (0.8...1.1)U_N $(0.8...1.1)U_N$ $(0.8...1.1)U_N$ $(0.8...1.1)U_N$ $(0.8...1.1)U_N$ $(0.8...1.1)U_N$ $0.8 \, U_N / 0.5 \, U_N$ $0.8 \, U_N / 0.5 \, U_N$ $0.8 \, U_N / 0.5 \, U_N$ $0.2 \, U_N / 0.1 \, U_N$ $0.2 \, U_N / 0.1 \, U_N$ $0.2 \, U_N / 0.1 \, U_N$ 20 · 106/50 · 106 20 · 106/50 · 106 20 . 106/50 . 106 200 · 10³ 200 · 10³ 150 · 10³ 10/5 10/5 11/3 4 4 4 1000 1000 1000 -40...+85 -40...+85 -40...+85 RT I RT I RT I

N

RINA

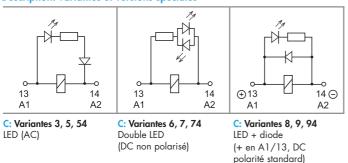
c**FU**®US

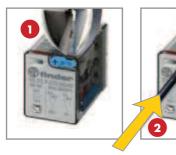

Catégorie de protection

Homologations (suivant les types)

Codification

Exemple: série 55, relais industriel embrochable sur support, 4 inverseurs, tension bobine 12 V DC avec bouton test verrouillable et indicateur mécanique.




Versions réalisables: uniquement les combinaisons indiquées sur la même ligne que le type.

Туре	Version bobine	Α	В	С	D
55.32/34	AC-DC	0 - 2 - 5	0	0	0
	AC	0 - 2 - 5	0	2 - 3 - 4 - 5	0
	AC	0 - 2 - 5	0	54	/
	DC	0 - 2 - 5	0	2-4-6-7-8-9	0
	DC	0 - 2 - 5	0	74 - 94	/
55.33	AC-DC	0 - 2 - 5	0	0	0
	AC	0 - 2 - 5	0	1 - 3 - 5	0
	DC	0 - 2 - 5	0	1-6-7-8-9	0
55.12/13/14	AC-DC	0-2-5	0	0	0 - 1

En gras, les versions préférentielles (disponibilité plus importante)

Description: variantes et versions spéciales

Bouton test verrouillable et indicateur mécanique (0010, 0040, 0050, 0054, 0070, 0074, 0090, 0094)

Il peut être utilisé de deux manières:

2) l'ergot de plastique est rompu (au moyen d'un ustensile approprié). Dans ce cas lorsqu'on appuie sur le bouton test et que, en même temps, on lui donne un mouvement de rotation, les contacts restent bloqués en position fermée. Ils restent dans cette position jusqu'à ce que le bouton test soit remis dans sa position initiale.

Dans le 2 cas, veiller à ce que l'action sur le bouton test soit rapide et décisive.

(DC non polarisé) + indicateur mécanique

(+ en A1/13, DC polarité standard)

(+ en A1/13, DC polarité standard)

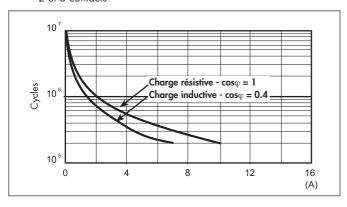
= LED + diode (+ en A1/13,DC polarité standard)

= Bouton test + LED + diode

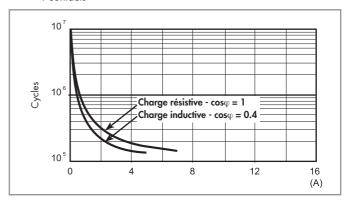
+ indicateur mécanique * Option non disponible pour la tension

94* = Bouton test + LED + diode

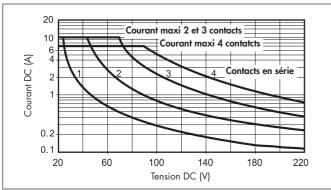
220 V DC.



Caractéristiques générales


Isolement selon EN 61810-1		2 contacts - 3 co	ontacts		4 contacts	
Tension nominale du réseau	230/400	230/400 230				
Tension nominale d'isolement	400	250				
Degré de pollution		2	2 2			
Isolement entre bobine et contacts						
Type d'isolation		Principale		Principale	•	
Catégorie de surtension		III		III		
Tension assignée de tenue aux chocs	kV (1.2/50 μs	4		4		
Rigidité diélectrique	V AC	2000		2000		
Isolement entre contacts adjacents						
Type d'isolation		Principale	Principale F		Principale	
Catégorie de surtension		III		II		
Tension assignée de tenue aux chocs kV (1.2/50 µs)		4		2.5		
Rigidité diélectrique	2000 2000					
Isolement entre contacts ouverts						
Type d'interruption	Micro-coupure de cire	cuit	Micro-cou	pure de circuit		
Rigidité diélectique V AC/kV (1.2/50 µs)		1000/1.5		1000/1.3	1000/1.5	
Immunité aux perturabtions conduites						
Burst (550)ns, 5 kHz, sur A1 - A2		EN 61000-4-4 niv		niveau 4	niveau 4 (4 kV)	
Surge (1.2/50 µs) sur A1 - A2 (mode	différentiel)	EN 61000-4-5 niveau		niveau 4	(4 kV)	
Autres données						
Rebond à la fermeture des contacts: N	O/NC ms	1/3				
Résistance aux vibrations (555)Hz: I	15/15					
Résistance aux chocs	16					
Puissance dissipée dans l'ambiance	à vide W	1				
	à charge nominale W	3 (2 contacts)	4 (3 contac	ets)	3 (4 contacts)	
Distance de montage entre relais sur c	ircuit imprimé mn	≥ 5				

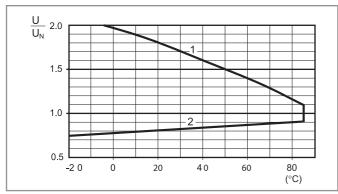
Caractéristiques des contacts


F 55 - Durée de vie électrique (AC) en fonction de la charge 2 et 3 contacts

F 55 - Durée de vie électrique (AC) en fonction de la charge 4 contacts

H 55 - Pouvoir de coupure maxi pour une charge en DC1

- La durée de vie électrique pour des charges résistives en DC1 ayant des valeurs de tension et de courant sous la courbe est ≥ 100x10³ cycles.
- Pour les charges en DC13, le raccordement d'une diode polarité inverse en parallèle avec la charge permet d'obtenir une durée de vie électrique identique à celle obtenue avec une charge en DC1.
 Nota: le temps de coupure de la charge sera augmenté.

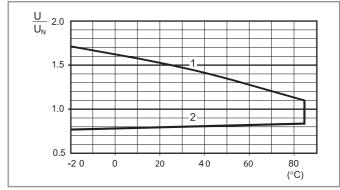


Caractéristiques de la bobine

Données version DC

Tension	Code	Plage de		Résistance	I nominale
nominale	bobine	fonctionnement			absorbée
U _N		U_{\min} U_{\max}		R	à U _N
V		٧	٧	Ω	mA
6	9 .006	4.8	6.6	40	150
12	9 .012	9.6	13.2	140	86
24	9 .024	19.2	26.4	600	40
48	9 .048	38.4	52.8	2400	20
60	9 .060	48	66	4000	15
110	9 .110	88	121	12500	8.8
125	9 .125	100	138	17300	7.2
220	9 .220	176	242	54000	4

R 55 - Plage de fonctionnement bobine DC en fonction de la température ambiante



- 1 Tension max admissible sur la bobine.
- 2 Tension mini de fonctionnement avec la bobine à température ambiante.

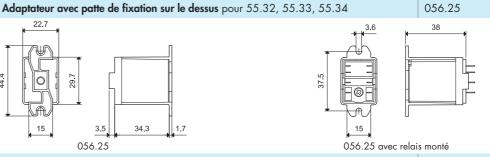
Données version AC

Tension	Code	Plage de		Résistance	I nominale
nominale	bobine	fonctionnement			absorbée
U_N		$\bigcup_{\min} \bigcup_{\max} \bigcup_{\max} \bigcup_{\min} \bigcup_{\substack{\min} \bigcup_{\min} \bigcup_{\min} \bigcup_{\substack{\min} \bigcup_{\substack{\substack{i\in} \bigcup_{\substack{\substack{i\in} \bigcup_{\substack{i\in} \bigcup_{$		R	à U _N (50Hz)
V		V	٧	Ω	mA
6	8 .006	4.8	6.6	12	200
12	8 .012	9.6	13.2	50	97
24	8 .024	19.2	26.4	190	53
48	8 .048	38.4	52.8	770	25
60	8 .060	48	66	1200	21
110	8 .110	88	121	4000	12.5
120	8 .120	96	132	4700	12
230	8 .230	184	253	17000	6
240	8 .240	192	264	19100	5.3

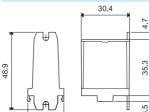
R 55 - Plage de fonctionnement bobine AC en fonction de la température ambiante

- 1 Tension max admissible sur la bobine.
- 2 Tension mini de fonctionnement avec la bobine à température ambiante.

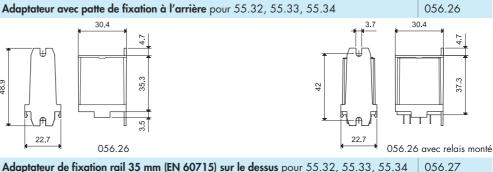
Accessoires


056.25

056.25 avec relais monté

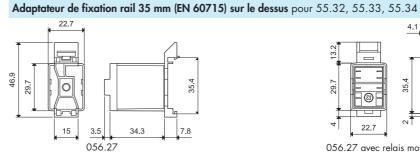

Ю 3.5

056.25

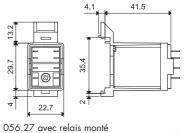


056.26 avec relais monté

22.7



056.27


056.26

056.27 avec relais monté

056.26

